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ABSTRACT

COHERENT BEHAVIOR
FROM INCOHERENT KNOWLEDGE SOURCES IN THE

AUTOMATIC SYNTHESIS OF NUMERICAL COMPUTER PROGRAMS

by Richard Brown

A fundamental problem in artificial intelligence is obtaining coherent behavior in rule-bas.d
problem solving systems. A good quantitative measure of coherence is time behavior; a system
that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from
combinatorial blowup is certainly behaving incoherently.

This report describes a rule-based problem solving system for automatically writing
and improving numerical computer programs from specifications. The specifications are in
terms of "constraints" among inputs and outputs. The system has solved program synthesis
problems involving systems of equations, determining that methods of successive approximation
converge, transforming recursion to iteration, and manipulating power series (using differing
organizations, control structures, and argument-passing techniques).

The theory of coherent problem solving used by this system is based on syntactically
restricting the rule language so that the effect of using a rule can be accurately predicted. Each
rule is independently pre-analyzed and an abstract description of its possible effects is produced.
These descriptions are combined with a local analysis of the current status of the deduction
process to decide whether a rule should be applied. This report explains how to perform this
analysis so that all known forms of combinatorial blowup are eliminated from the deduction
process. Because this process depends only weakly on the nature of the task (program synthesis).
there is hope that this theory of control can be adapted to other problem domains.

In addition to this theory of coherent rule-based deduction, results concerning the use of
EL-like constraint networks as a programming language have been obtained (EL was a system
written by Stallman, Sussman and others [S79] for electronic circuit analysis). In particular a
new and powerful way to describe and manipulate looping control structures has been developed.

Thesis supervisor: Gerald J. Sussman.

Title- Associate Professor. Department of Electrical Engineering and Computer Science.
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CHAPTER 1

INTRODUCTION and OVERVIEW

This report is about rule-based problem solving. It has a motto-

The less a rule can do, the better the effects of using it can be predicted.

This motto suggests the key to obtaining coherant behavior by avoiding exponential behavior

(combinatorial explosion) in problem solving. The remainder of this report shows how to do

this, at least in the domain of synthesizing numerical computer programs from their

non-procedural specifications.

Nature and direction of the research

One of the central goals of research in Artificial Intelligence is to learn how to create automatic

"expert problem solvers." Perhaps the fact that the author of an expert problem solver must

have some expertise in the solver's domain explains the popularity (at least at MIT) of electrical

circuits and computer programming domains. This research concerns the latter.

To construct an automatic programming system, several separate but related

sub-domains and their corresponding experts are required. These include program"

understanding, specification acquisition, program verification, and program synthesis. The

last is the domain of expertise of the system described by this report.

II
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A program synthesis system takes a specification (for example, a predicate ralculus

description of the relationships between the inputs and the outputs) of a program and produces a

program (in, for example, the programmming language LISP) that meets those specifications

Two quick examples of the kind of problem a program synthesis system should be able to solve

(given a suitable rule library) are:

I. If told that the output times the output is the input, it should write a square root
program. The system should be able to adopt Newton's method for finding zeros of
functions to this problem.

2. If told that F(O) = 0 and that F(n~l) - 2F(n)+l, it should discover that F(n) 2n -

and write a program that computes this quantity.

This report describes a numerical program synthesis system. The kinds of problems it can

currently solve (these include the two examples above) are described in the next section.

Diagram "Bernoulli Example" shows an input specification (in mathematical notation) and the

resulting code -- chapter 4 has the details.

The fundamental difficulty in constructing problem-solving systems is the so-called

.combinatorial explosion" problem. That is to say, given a reasonable measure of how hard the

problem at hand should be, a "combinatorially explosive" problem solver takes an amount of

time proportional to an exponential (or worse!) function of that measure (chapter 3 is more

explicit). The measure of "how hard the problem is" need not be the usual complexity theoretic

"size of input" measure' In general, the size of program (and therefore certainly the time needed

to write it) is an unbounded function in the size of its specification. For purposes of measuring

the coherence of a problem solver, a measure of "how hard a problem is" could be the number



DIAGRM~ "BERNOULLI EXAMPLE"

(N)l N _ t

N (e - 1

N= 0

B(N is the Nt Bernoulli number. The problem is:
Given N, find B(N).

The system wrote the following function:

(DEFUN BERNOULLI (N)

(Do ((COUNT 0.0) (P (CREATE-VECTOR 0.0 N 1.0)))
(.COUNT N) (ACCESS-VECTOR P N))

(SETQ COUNT (PLUS 1.0 COUNT) P

(STORE-VECTOR

P

COUNT

((LAMBDA (00065)

(TIMES (CONRD( ((LAMBDA (00041)

(CONO ((0 (RFACTORIAL 60041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (AFACTORIAL 60041)))))

(DIFFERENCE (PLUS COUNT 1.0) COUNT))

0.0)

(COMO ((- 60065 0.0) (ERROR)) (T (ERROR))))
(F (QUOTIENT 60055

((LAMBDA (60041)

(CONG ((- CRFACTORIAL 60041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (RFACTORIAL 60041)))))

(DIFFERENCE (PLUS COUNT 1.0) COUNT)))))
(RFACTORIAL COUNT)))

(DIFFERENCE

(COMOD ((- (PLUS COUNT 1.0) 1.0) 1.0) (T 0.0))
(D0 ((UM 0.0) (P1 0.0))

M(P COUNT) SUM)

(SETQ SUM

(PLUS SUM

((LAMBDA (60068)

(TIMES (CORD ((w (RFACTORIAL M) 0.0)

(CORD ((- G0068 0.0) (ERROR)) (T (ERROR))))
(T (QUOTIENT G0068 (RFACTORIAL M1))))

((LAMBDA (00041)

(COND ((- (EFACTORIAL 60041) 0.0) (ERROR))

(T (QUOTIENT 1.0 (RFACTORIAL 60041)))))
(DIFFERENCE (PLUS COUNT 1.0) Ml))))

(ACCESS-VECTOR P MI)))
M (PLUS 1.0 M)))))))))
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of rule applications that were needed (as opposed to the larger number actually performed) in

the solution found. This is the measure that will always be used in this report.

In order to be practical, a program synthesis system must take less than an exponential

amount of time in the number of rule applications required, and in order to be usable it must not

take more than a low-order polynomial amount of time in the number of rule applications

required, Complexity theory tells us that in general there exist general recursive functions for

which there is no "optimal" implementation. Even If there is for the particular function being

synthesized, a practical implementation would generate one implementation fast, and then as a

back-ground task be able to improve this function.

The result of this research is a collection of techniques (embedded in a synthesis system)

that synthesize numerical computer programs. These techniques do not depend strongly on the

fact that the task is synthesizing programs, so there is hope that they could be adapted to

problem solving in other domains. I conjecture that these techniques in fact run in time

proportional to a polynomial function of the number of rules required to solve a synthesis

problem.

Kel Results

What constitutes a "result" in the field of artificial intelligence? The goals of Al are to make,

machines smart and to understand human intelligence using the computational metaphore. A

result in Al is therefore something that pulls that goal closer. Specifically, it is an insight into
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the nature of a task (possibly reformulating the description of the task) that makes th,

computational aspects of performing the task more tractable: a faster procedure or one requiring

less memory., a method for performing the task on a larger "example space", or even a

methodology making the programming of the task radically simpler.

Success in obtaining a result in Al comprises:

I. A task description, perhaps informal, with a sufficient number of dissimilar targ,'t
examples to show the plausibility of covering the "example space."
2. A working program at least capable of solving the target examples. The progi am
should not solve the examples by luck or accident.
3. A set of identifiable principles explaining why the working program functinns
These identifiable principles constitute the result(s).

This research has been successful. The target examples (to be discussed in detail shoitly) weie

selected to span the difficult subtasks involved in synthesizing numerical computer programs

that do not use data-structures. A working program was obtained that (on a relatively unloaded

PDP-10) can solve several examples faster than an expert human programmer.

There are three basic principles on which this research is based:

I. Synthesis by analysis of constraints. Since the first use of "networks of constraints"
in Stallman and Sussman's EL system [S79], this formalism has become increasingly
popular. This research uses the idea of propagating code fragments (in addition to
the usual arithmetic and algebraic expressions) through a network of constraints in
order to write code. Stated another way, the "data base" of constraints connected
together to form a network is interpreted many different ways by the synthesis
system.
2. Diagrams provide insight. In terms of the actual implementation, synthesis
problems are of course presented as text strings. But what might be terned
"topological configurations" seem to be the real key in deciding what deductions to
perform next. By extensively using the diagrams of networks of constraints, much
insight into the recognition and use of these "topological configurations" was obtain-,d.
3. Combinatorial Blow-up should be the central concern. People can perform the task
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of writing code given specifications. What ever this task actually involves. I'.nple dl

not suffer from combinatorial blow-up This observation should be the stairing 1.i111

for an attempt to get computers to perform program synthesis: if a combinatorial
amount of work is required to perform the task, then the task must he reformulatd

I believe the three principles above can and should be applied to other research in artificial

intelligence.

The nature of expert problem solving systems

At a very abstract level, a problem solver has four major components, as illustrated in diagrarr,

problem solver". Rules may be assumed to be of the situation/action type, where th,' action is

to (in general) produce a new data base by modifying the old one. Statements in the'

rule-application library tell when rules should (and more particularly should not) be ariplrd

Since the topic of statements in the rule-application library is different frnm the tolic of the

rules, there is reason to believe that these two libraries are written in different languages. (But

see de Kleer et al [dK79]).

The deductive mechanism has two sub-components: a matcher or rule-applier, and a

truth-maintainer that makes sure the updated data base Is consistent.

The data base may be thought of as the current state of mind. In the absence of strnng

evidence to the contrary, it should be assumed that for any data base, several rul,'s can ho,

applied. Therefore, one must assume that the deduction mechanism gives rise to a tre," nf data

bases as shown in diagram "tree of data bases". From this diagram it is evident that nne miist

assume the number of data bases explored is exponential in the length of the solution drivation.



DIAGRAM "PROBLEM SOLVER"

' RULE APPLICATION

RULE LIBRARY . LIBRARY

ATA

"TREE OF DATA BASES"

INITIAL DATA BASE

RULES A AND B APPLYE c,.d oF rc ,.. ' -!FRLE ADD.PL
o o 6 RULES E AND F APPLY

- 15-
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The British Museum algorithm for program synthesis would generate (in order of

increasing length) all possible programs and all possible program correctness proofs A pro,f

checker would thin examine each proof as it is generated. The first program whose proof is

correct and shows that the specification has been satisfied would be returned. Althoijgh

absurdly impractical, the British Museum algorithm takes an amount of time that is only

exponential in the length of the program plus correctness proof.

The discussion above leads to the conclusion that in order to be better than the British

museum algorithm, a rule-based expert problem solver must have some combination of the

following properties:

I. For any realistic data base, only one rule is applicable (a special case of 4 below).
2. The data base tree is always shallow.
3. The rule-application library is good enough to guarantee that the average numh.'r
of data bases explored is polynomial (in the depth of the tree).
4. The data-base "tree" converges so that the breadth at each level is bounded hy a
polynomial of the depth.
5. The form of rules allowed, and the deductive mechanism applying them, have been
restricted sufficiently to guarantee that rules do not combine combinatorially.

Although a rigorous proof has not been found, the problem solver described in this report

appears to have the fifth property. This means that as long as the rule library is consitent (not

an unreasonable expectation), the problem solver is conjectured to expend only polynomial effnit

(in the number of rule applications actually required) in writing a program meeting th,,

specifications (provided such a program exists and can be found using the rules in th, hbial y)

regardless of how many rules are present and regardless of how much apparent potential thrie

is for combinatorial explosion.

I TA



1. Introduction and Overview 17 Nature and Direction of the Research

A troblem-solving methodolog7

This report presents a problem-solving methodology (in the guise of a system that uses it) that

is not based on the traditional goal/subgoal paradigm. It is a matter of speculation as in

whether human problem-solving is goal-directed or only appears to be goal-directed But as

far as this program synthesis system is concerned, it only appears to be goal-directed, as will b,

evident when the theory of its innermost operation is revealed. That is to say, this system

demonstrates (for at least the task of program synthesis) a workable substitute for an explicit

goal/subgoal organization.

I believe a truely intelligent problem solving system will have both a strategic

(goal/subgoal paradigm) and a tactical (this system's paradigm) component. The strate'gic

component might have rules concerning topics like

* How to decompose a problem into (relatively) independent subproblems [Sa75ab]
* How to form and debug an appropriate analogy [Br77], [U77. [W791
* A sequence of steps to try performing to solve a class of problems.
* How to form and debug approximate solutions to the problem [Su75].

If the strategic component is (as I believe) inherently exponential. then combinatorial explosion

can be prevented by limiting the depth of the strategy goal tree. Therefore one only wants the

strategic component to operate at very high levels of abstraction.

The tactical component comes into play when the level of detail becomes too fine for the

strategic component to deal with effectively (or when no strategic rules appear applicable)

Given a relatively simple problem, the tactical component solves that problem without

generating any new goals or subgoals.

.- i. S
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The system described here is a prototype of a tactical compoent. It is surprisinly

powerful in its domain considering its lack of global perspective. If the tactical component can

take care of as wide a range of problems as this report suggests, then perhaps the strategic

component can ignore details below a higher level of abstraction than previously believed. Th,

tactical component could be thought of as the applier of "brute force." But the brute is a nrhl

savage: street wise with animal cunning.

Both the tactical and strategic components might make use of specialists to do things

like (in the domain of numerical programs) solve integrals. These specialists could ...

But enough speculation! -

Examples

Naturally one must be concerned that a program synthesis system with a restrictive 1ti,"

language (and specification language) nonetheless still be able to solve "interesting" problems and

write "interesting" code. The following four problems are the central examples used in this

report to illustrate the theory of operation of the program synthesis system. These exampler

concern the following- general topics:

I. Systems of equations
2. Inverses and zeros of functions
3. Changiog recursive control flow to iterative, and vice versa
4. A peek at algorithms involving data structures

The "example space" of numerical computer programming problems is very large; the list (f
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example problems above is very small. Nonetheless, this small list will force the system to

demonstrate competence in handling many (if not most) of the concepts of numerical computer r
programming. These concepts include: convergence, power series, successive approximation,

symbolic differentiation (and other symbolic operations), transformations of program control

structures, and limits. Since this system demonstrates "understanding" of these concepts. it is

plausible that with a larger library of facts the system could solve any problem in the "example

space.-

Systems of equations: the "Linear equations problem"

The synthesizer is given the following three linear equations in three unkriowns (the parsing of

these equations has been shown explicitly):

((x - y) -z) - A
((x - y) • z) -B
((-x - y) . z). C

It is told to write a program that takes A, B, and C as inputs and produces (for example) "x" as

output.

Two observations about the synthesizer can be made concerning its ability to solve this

problem. First, the system is not based on "refinement rules [Ba771" The specification of th,-

problem does not give any hint as to the eventual structure of the program. The systom is not

told it is solving a system of (linear) equations -- nor does it eventually recognize that it is doing

so. Nor, for the same reason, is the synthesis system particularly "goal oriented" -- its goal is to
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get a program to compute the answer, but no other subgoals (in the traditional sense) a;-

generated.

The second observation concerns the potential for combinatorial explosion. In solvtn,

this problem, the system only uses the standard arithmetical axioms of commtativity,

associativity, identity (e.g. q - 0 - q), and the distributivity of multiplication over addition If

the system is to avoid exponential behavior, it must avoid discovering things like

2A - A -A.

That exponential behavior in this problem has been avoided will be demonstrated (in thaptei 1)

by the fact that the system needed (in retrospect) every deduction it made, with the exception of

a few initial applications of commutativity. That is to say, the solution effort did not invnlve

any unnecessary steps. Some statistics concerning this forthcomming solution may be of interest

Number of rule pattern matches found: 148
Number of rules applied: 13
Number of rule applications required: 5
All unneeded rule applications concerned commutativity of addition.

Finding the inverse of a function: The SQRT problem

The synthesis system is told that

X*X-Y

and is asked to write a program that takes Y as input and produces X as output. Since thli

specification neither guarantees any real output (the case if Y is negative) or a unique output (the

case if X is negative), the ystem is also told that
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Finally, the "absolute error" in X is bounded by a constant E. The system, using the fact abroit

multiplication

"If A > 0 and C > 0 and if A*B - C, then B > C if and only if I > A"

deduces that

if Y >, then I <X <Y
ifY < 1, then Y < X < 1.

So the system knows upper and lower bounds for the value of X. The system also decides that

the quantity X is a zero of the function

F(X). Y - (X X).

The system finally writes code implementing a bisection search for the zero of the auxihary

function F(X).

A Dijression

If my supervisor sent me a system message "Quick, write me a square root program" I would

write a program using a bisection search because that is the program I'm able to write the

fastest and with the least amount ef thought. But I wouldn't be surprised to receive a secrnd

message "Thanks, I'll use that, but why don't you try to write a better program."

A practical automatic programming system (or, perhaps more accurately, a

semi-automatic program development system, since even If programs won't need debugging,

I.
I.

- - .-
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program specifications certainly will) should write programs as fast as it can so testing can

proceed in a timely manner, and use its "spare time" to polish, hone, fine tune, and otherwise

generally improve its code.

For both this practical reason and for complexity-theoretic reasons (various speedup

theorems show that "optimal" programs do not exWst for some recursive functions) the program

synthesis system described in this report uses the same data base, rule library, and contrnl

mechanisms to write LISP programs, and to improve programs it has written.

SQRT example resumed: The "Newton's SQRT problem"

The synthesizer has written a square root function using a bisection search algorithm. It is nnw

asked to improve that code.

The system continues using everything it discovered in the initial problem solving,

effort. One of the rules in the system's library says that if Newton's method converges, then on

the average Newton's method will require many fewer iterations to obtain the same accuracy as

the bisection method.

The rule says to use the following test (see [R69], p.1178, section 31.4.c) to check for

convergence:

I. A zero of F(x) is in the range ra,b).
2. F'(x) is either always positive or always negative for x in [a,b].
3. F"(x) is either always positive or always negative for x in (a,b].
4. F(a) and F(b) have different signs.
5. Start with initial x = a or b, depending on which of F(a), F(b) has the same sign as
F"(root). (The rule actually used ignores this restriction, but it could easily he

1~ 20
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included.

In order to apply this test, the system must be able to take symbolic derivatives, and

symbolically determine whether certain functions have zeros within specified ranges.

After succeeding in proving Newton's method converges, the system compares the

time-costs of both methods, and decides that Newton's method is superior. In any futule

improvement efforts it will be the Newton's method computation that receives attention, not the

bisection search computation.

The description above of the system's problem solving effort is in terms of goals and

subgoals. It must be remembered that these terms are the author's. In fact, the system at no

time announces to itself "now I will try to solve this subproblem".

In addition to showing the incremental nature of the synthesis system, this example also

illustrates the system's approach to (worst case) time-cost analysis. There are two popular

techniques of time-cost analysis:

I. Comparison of algebraic descriptions of the time-cost (the system can always obtain
such an expression for an upper bound of the code's time cost).

2. Comparison of the numeric time-cost quantity for some "typical" set of inputs (this
is the only method used by Kant's LIBRA system K77]).

The synthesis system described here uses both techniques and notes an anomality if the two

analyses do not agree in which computation is faster.

Iteration and Recursion: The "Factorial t[roblem"
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Notions of looping control control structure -- iteration and recursion -- are the most distinctive

aspects of programming. These notions are absent in (if the reader will excuse the term)

classical mathematics. A program synthesis system must therefore exhibit a facility in dealing

with looping. Furthermore, the underlying theory of the system should include some description

of recursion and iteration that is deeper than a purely syntactic distinction in the data-h,'s,

representation.

The example used in illustrating the system's facility in dealing with loops starts (tilt

with a specification of the factorial function:

f(n) = n * f(n-I)

f(O) = I (specified as base step)

When asked to write a program for "f", the system produces a recursive factorial (no interesting

deductions are required) like the one below (I- is MacLISP's decrement function):

(DEFUN FACTORIAL (N)

(CONO ((= N 0) 1)
(T (* N (FATORIAL (1- N))))))

This is an appropriate point to mention that program specifications can themselves be

programs. In at least a limited sense a program synthesis system is also a program

transformation system and a hairy optimizing compiler.

There are (at least) two iterative factorials that could presumably be derived from a

recursive factorial function:

(DEFUN FACTORIALI (N)

(DO ((M N (1-'M))

(FACT 1 (I M FACT)))
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((.M 0) FACT)))

(DEFUN FACTORIAL2 (N)

(Oo ((M 0 (1+ M))

(FACT 1 (* FACT M)))

(( H N) FACT)))

Symbolically these three functions compute di'ferent expressions:

FACTORIAL: (N * ((N-I), ((N-2)... ))) "counts down, computes up"

FACTORIALI: (...((N (N-I)) * (N-2))... ) "counts and computes down"

FACTORIAL2: (N . , (3 * (2 * I))) "counts and computes up"

The transformations from FACTORIAL->FACTORIALI is only legitimate becaus-,

multiplication is associative. The transformation from FACTORIAL->FACTORIAL2 is only

legitimate because the function "l-" has a functional inverse.

The synthesis system can perform both of these transfromations. The easier rule to

state turns out to be the one resulting in FACTORIAL->FACTORIAL2. The other

transformation can only be partially implemented because the system does not pursue subgoals of

the form "prove the following (complex) operation is assoclatiative."

Data Structures and Bernoulli Numbers

A quick perusal of the literature on automatic programming, apprentice progtammers, and

program synthesis would suggest that the principal difficulty is associated with devising and

manipulating the appropriate data structures for the particular program-task. So it must be

surprising that, as yet, none of the examples have used a data structure more complex than
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"floating point" numbers, where even the number of digits of precision has not been relevant In

fact, the domain numerical computer programs was carefully selected to specifically avoid

having to consider the problem of data structure design.

Why avoid worrying about data structures? There were several reasons. One wa,'

simply to limit the amount of work involved in the research (no one can fault the author fot

that!). Another reason is of more general interest. It has often been noted that there is

"something funny" about the distinction between what might be called temporal organiz.tion and

spatial organization within a computer program. Many computer programming languages use a

"pun" in treating an array access in syntactically the same way as a function invocatirri. Whiper,

one works at the assembly language level, one occasionally finds it faster to re-cnmput, a

quantity when ever it is needed than to store and recall it each time.

A decision was made to avoid data-structure considerations. But then the problem of

computing Bernoulli numbers came up, and rather than generate horribly inefficient code, th,

author decided to build into the system a little data-structure design capability. This exampl.,

shows what resulted.

Bernoulli numbers (written as a function B(n) for n a positive number) are d,'fined hy

the equation

SUM from n-0 to inf. B(n)*(tn/n!)) - t / (et - I)

Suppose the system is given this equation, and asked to write a program for B(n). The

definition of B(n) is "buried" inside an (infinite!) loop. One might expect that this woild make
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the problem hard to state, and the rules needed to solve this problem very hard to write. In

fact, the representation for loops makes no distinction between *inside" and "outside", and the

rules can be written straightforwardly.

The system solves this problem, unsurprisingly, in a more or less standard way. Tie

left side is (or can be viewed as) a polynomial series (power series) In the variable "t. Using

the fact (contained in the set of rules provided to the system) that

et - I = SUM from m-I to inf tm/m!

the defining equation can be written as the multiplication of two power series. But there is a

general rule for multiplying power series. The system derives

SUM from L=l to inf (SUM from p=O to L-I B(p),(I I (P! * (L-p)!))] * tL t

But from this it can be deduced that, except for L-I, the equation

SUM from p-0 to L-I [B(p),(l / (P! * (L-p)!))] - 0

holds. Looking at the equation above, it is clear that if B(0) up to B(L-2) are known, then

B(L-l) can be computed. Specifically,

B(L-I) = - SUM from p-0 to L-2 [B(p),(l I (p! * (L-p)))] * (L-Y

For L-1, it must be that

SUM from p-0 to L-I [B(p)(l I (P! (L-p))] - I

so B(O) - I.

The analysis above can be used to write a program to compute B(n), see tale

"Bernoulli code" in chapter 4, and diagram "Bernoulli example". If a recursive program is read

S=



1. Introduction and Overview 28 Example.,

off of the equations directly, the resulting program will run exponentially in the size of its

argument. On the other hand, an algorithm employing a dynamically built table starting with

B(O) up to B(n) has a time-cost of about n3.

The* should be no surprise that the synthesis system is able to write the "exponential"

Bernoulli number generator. The purpose of the fourth example is to show how the classical n

algorithm is found and illustrating how algorithm specification and derivation might lead

directly to data-structure specification and realization.

THESIS

One can investigate expert problem solving either *in general" or in a particular domain. This

report concerns expert problem solving in the particular domain of numerical program synthesis

Free use is made of particular (and perhaps unusual) features of this domain. Although I will

argue that the results of this investigation are generally applicable, the thesis being presented

only concerns numerical program synthesis.

The usual investigation of expert problem solving develops a deductive comp.,nent and

a knowledge-representation scheme that is (claimed) sufficient for the task of interest

Beginning with a selection of facts and rules about the domain, these investigations develop

systems capable of applying these facts and rules. Attention then is centered on controlling th

system (or, rather, had better be centered on ...), which may be more powerful than is actually

MAWi
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necessary.

In sharp contrast, this investigation focusses on what deductive capabilities are

necessary for the task of program synthesis. This research approach begins with constraints ron

the capabilities of the deductive component. The knowledge representation scheme reflects those

constraints by (initially) having limited expressive capabilities. From this starting point th,,

research approach turns to encoding domain facts and rules.

What a priori limitations can be placed on the deductive capabilities of a program

synthesis system? While one would expect a synthesizer to be able to app/ly Newton's method

for finding zeros of a function, for example, it need not be able to invent Newton's metircd

That is to say, there are problems we would all agree are simply too hard for a synthesis syst,'m

(any system) to solve. There must be a class of problems (humanly solvable) that one would not

ask human programmers to solve -- so an automatic system need not be capable of solving,

problems in this class.

One class of problems (writing code) we all can agree to try avoiding could b,,

characterized as

"problems whose solution time is exponential (or worse) in the length of the solution

derivation."

(Solution time and length refer to writing the code, not running the code). Notice this is not th-

usual time-complexity measure. There are several useful operations for program synthesis that

are (on the face of it) exponential. These include register-allocation (Bruno and Sethi show this

IVA
• ..
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to be NP-complete [Br76]), and theorem proving to show some series converges (discussin

below shows this has an NP-complete problem as a subproblem). As a detailed example of this

kind of problem is that of proving a statement in the propositional calculus is not a tautology

(this is known to be NP-complete). The statement "A or B implies A" is not a tautology becausse

it is false if A is "false" and B is "true". A proof is an assignment of "true" and "false" to thr

variables in the statement such that the entire statement is false. The best (known) algorithrr

for finding proofs like this is exponential in the number of variables (the length of th,

"solution").

One way to limit a deductive system (hoping to make it run in polynomial iime) is [o

limit the expressive power of the "rule language." The term "expressive power" refers not to (an

absence of) syntactic sugaring, but to the existence of predicate calculus formulae that cannot (an

any way) be translated into rules. As an example of such a restriction in expressive power,

consider a modification to the task (above) of proving the non-tautologic status of certain

propositional calculus expressions. Suppose the form of the expression is limited to implicaw,tvi.

of conjunctions of variables -- expressions without the "OR" connective and without the "NOT"

operator (these are Horn clauses, [H74]). Such an expression (like "A and B and C imFlie A

and D") can easily be shown not a tautology by finding a letter variable (D in this ca e) on Ill"

right hand side of the implication that is not among the conjuncts to the left of the implication

If this letter variable is assigned "false" and all others assigned "true*, the entire expressarn

evaluates to "false." Expressions of this restricted form can be proven non-tautologies in lint-at

:l I.
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time (actually O(n*logln)) because of the time taken to look up variable names).

With these preliminary remarks, the thesis can be succinctly stated:

By limiting the expressive power of a rule language and correspondingly limiting

the capabilities of the deductive system, a problem solver can be developed in which

any problem whose observed solution involved N steps (solution of length N) will be

solved in steps numbering no more than a polynomial function of N.

If solution time is a polynomial in the total number of rules applied (and it is), then a convenient

measure of solution length is the number of rule applications actually required to solve the cr,de

synthesis problem. The thesis says that although useless deductions might be made, the numlbr

of useless deductions will be kept reasonably low (bounded by a polynomial in the number of

worthwhile deductions that will be required) by virtue of the deduction algorithm.

This thesis is still only a conjecture. It will be defended, but not formally pioven, by

exhibiting a rule language whose expressive power has been limited in a way very similar to the

way expressions were limited in the propositional calculus example above. A deductive

mechanism will be described and demonstrated on the four key programming problems

described above.

A Sketch of the Synthesis System

Here is a brief sketch of the synthesis system. The reader should not worry much about ih,"
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details; all will be explained in chapters two and three.

In writing axioms for arithmetic, one often finds instead of, say, addition being treted

as a function of two arguments, it is written as a predicate of three arguments. To say, fo,

example, that A-X+Y and B=X-Y, one would write something like

(C X Y A) and (C B Y X).

The logician (ignoring the problem of how the variables should be quantified) would theii

interpret these expressions as declaring that certain relations hold among the variables X, Y. A.

and B.

On the other hand, a computer scientist might interpret a statement

A-X+Y

as a computational specification -- it tells how to compute the value of a variable A from the

values of variables X and Y.

The rule language for the program synthesis system is based on a representation

combining both the declarative and computational interpretations. Specifically, a .C device

would be defined as having three terminals (arguments) named SUMMANDI, SUMMAND2,

and SUM. Some constraint rules would be written telling that some terminals can be computed

on the basis of others, and giving details about how that computation is effected:
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terminal Computed terminals needed expression

SUN SUNIAND1.SUMAND2 (+ SUltAND1 SUMMAN02)

SUltAN01 SUN.SUMMAND2 (- SUN SUMMANOZ)

SUMKANDZ SUMSUMMANDI {- SUN SUMMANDZ)

The expressions can be thought of as LISP code, although the system actually uses a separate

constraint rule language and interpreter system so that expressions can be evaluated not only to

form code, but to provide time-costs, upper and lower bounds, and symbolic expressions.

The separation of "what terminals are needed" from "how to do it" is both due to

efficiency considerations and for theoretical reasons. If I were to tell you that

C + D - E and C + D = F

you would immediately conclude that E and F were the same. But if I claimed that

D - E2 and D - F2

you would not feel safe in asserting that E - F. (E-3, F--3, D-9 for example). In the next

chapter it will be shown that whether identity can be deduced or not in the two cases above

depends entirely on the "terminal-needed" parts of the constraint rules.

Statinz the Problem

A programming problem is given to the synthesis system as a series of devices connected (at

their terminals) to various variables (represented by nodes). When devices are connected to
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nodes, a network is formed. In addition to a network, the programming problem also specifies

which nodes are to be inputs, and which is the output.

Although these networks are given to the system as a sequence of LISP expressions,

several important insights can be obtained by examining a network drawn out in a diagram.

The network corresponding to

(C X Y A) and (.C B Y X)

is shown in diagram "two-linear-equations". This network formalism is based on Statlman and

Sussman's electronic circuit analysis program EL [5791

Suppose that nodes A and B are specified as inputs, and node Y is specified as th,'

output. A process called propagation (a form of local deduction) would examine the constraint

rules of the two .C devices (named DI and D2) to see if any other nodes can be assigned values

(see diagram "Value Propagation Example" in chapter 2). In this example no new values can

be obtained, so some other, more global, deductions apparently must be made.

The diagram for this example contains a very important configuration called a circuit.

This circuit starts at node X, goes to device DI (direction is not important), then to node Y, then

to device D2, and finally back to node X. None of the nodes in the circuit have been given

values (which is to say that the system doesn't know how to compute them yet). A key

observation is that if a problem can be solved, but is not solved by propagation, then the output

node must be in a circuit (or can be determined by propagation from nodes that are in a circuit).

A second key observation is that to solve a problem one wants, somehow, for circuits to
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get smaller (see "Two Linear Equations Solution"). The system uses a library of transformation

rules (or simply transforms) to make this happen.

Transformation rules

It is the language for writing these transformation rules that has been restricted. Recall

that a network is a collection of interconnected devices and nodes. A network can also be

considered as a conjunction of constraints (a constraint is a device interpreted as a "predicate" of

all its terminals). By their nature (e.g., usage in this system) constraints must all be satisfiable

(be "true") in the sense that. there must exist some assignment of values to nodes so that all

constraints (considered to be predicates) evaluate to "true." A transformation rule is a statement

to the effect that one network can be transformed into another (called the "instantiation

network"). Of course the entire transformation must be "true" when considered as a

mathematical statement. But to prevent expressing a disjunction, a stronger restriction is

imposed: the instantiation network, considered in isolation, must have the property that all its

constraints (expressed as devices) are satisfiable.

For example, one transformation the system has in its library says that r~r.2r:

((.C R R S)) -> ((*C 2 R S)).

This transform could be drawn as shown in diagram "doubling." An important observation to

make concerning this diagram is that if S is known and node R is not, then the left side of the

diagram contains a circuit (with only one node R) but the right side does not. The "doubling"

Si
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transformation apparently "removes" a circuit when S is known and R is not.

Another transform, expressing the mathematical fact that

(_,R). S - (Q +S) . R

is shown in diagram "funny associativity." There is nothing special about this transformatirn,

other than it happens to help solve the current problem. Written as constraints, this transform is

((.C R Q D) (+C D S E)) -> ((.C S ,F) (.C R F E)).

The left part of this diagram (the pattern) matches the problem in the diagram "two linear

equations" with the correspondence

q=> Y, R => B, S -> Y, E => A.

The transform node D is also matched, but this doesn't matter because D does not apprar on thp

right-hand side. The result of applying the "funny associativity" transform is to add a coiy of

the instantiation network to the problem network (of course, this may trigger other iuls.s -

combinatorial explosion is a danger the system controls, see chapter 3). A new node must bh

created for the node F because it does not appear in the left-hand pattern part of the ti ansfroi m

The solution to this problem is found in the data base after applying "funny associativity"

followed by "doubling" The state of the data base after all this is shown in diagiam "two,

linear equations solution."
*

An important ohservation to make concerning the "funny associativity" diagram is that,

in the left (pattern) part, there are exactly two circumstances inwhich using this transform will

result in shrinking a circuit. These are first if nodes "Q7 and "S" are known, and :odes "R"
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and "E" are unknown, and second if nodes "R" and "E" are known and nodes "O,, and "S" are

unknown. The second situation is extant in the initial problem. r

In the diagram "two linear equations solution" the node C can be assigned a value by

propagation (the value is A - B). Then Y can be assigned a value by the "*C" device via

propagation. If code fragments are propagated instead of symbolic values, then code will be

written for computing Y from inputs A and B, as was requested.

Limiting expressive ptower and combinatorial blowut

The mathematical facts contained in the "funny associativity" and "doubling" are of the form

that the left side (a conjunction) implies the right side (another conjunction). All tiansforms

have this simple form. Although all examples have been equivalences this is not generally tru,"

Disjunctions (use of OR) and negations (use of NOT) are not al ed. The expressive power

of the transformation rule language has been limited. Furthermore, it should be remembered

that propositional statements of this restricted form (implications of conjunctions) are precisely

those for which the non-tautology proof was easy.

To see that the expressive power has been limited, notice that even though implication

can be r-written as shown, it cannot be used to encode disjunction:

A - B is equivalent to -A OR B

Trying to encode a disjunction using negation doesn't work because negations are not allowed:

(-A) => B (equivalent to A OR B).
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Direct use of negation is not allowed. But maybe indirectly one could encode negation:

C -i, "FALSE" (equivalent to 'C OR "FALSE", equivalent to ').

But consider what such a transformation rule would have to say: From C one can deduce that

some constraint holds among some nodes when in fact it can never be satisfied! This violates

the imposed condition that all constraints in a network are satisfiable. That is, the

transformation rule would necessarily be a lie. So a disjunction cannot be constructed in this (or

any other) way. Besides, since the really important feature of the restricted form is that

disjunctions cannot appear on the right-hand side of implications, the simplest "bad" form looks

like:

A -> (C -> "FALSE") .> B] (equivalent to A -> (B OR C)).

The form above is not an implication of conjunctions as required.

The restrictions to the transformation rule language may look familiar to those working

with resolution theorem provers. A Horn clause has the form

(OR A -Tl -T2 ... -TN).

It is a disjunctive clause with no more than one positive literal. Any implication of conjunctions

of positive literals can be translated to Horn clauses (this is not true for more general forms)

Resolution becomes more efficient if only Horn clauses are involved, see [1474].

By using this restricted form of transformation rule two separate kinds of combinatorial

explosion (exponential behavior) have been avoided. The first concerns the general problem of

proof by contradiction and data base splits. The second concerns legitimate but useless

-',.'-
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deductions.

If a problem-solver is faced with a fact like Ox implies y or z" a common reaction is (if

x is true in the current data base) to assume y and see if a contradiction results. If one does.

then (one way or another) the deductive system "backs up" and decides that "not y" and "" ate

both the case. Since in effect the problem solver is thus searching a tree, there is a potential for

exponential behavior -- an exponential number of data bases must be searched (in general) as a

function of the depth of the tree.

In sharp contrast, the transformation rule language has been restricted so that it is

impossible to state a rule that might give rise to a tree of data bases. Reasoning by

contradiction cannot be used by the deductive system because the rules are not expressive

enough to say what should be done if a contradiction is found.

Another kind of exponential behavior arises in the problem of finding the value of a

variable Vf given the values of VI through Vn when the following Is true:

(Vf + (VI + (V2 + ..., (Vf +...)))) -O.

Suppose that the system can interchange two variables without changing the nesting. By

applying the interchange operation, all sequences of Vf and VI through Vn can be generated.

and there are 0.5*(n*2) such sequences. If the system can solve the problem after getting the

two Vf variables next to each other, then in fact no more than n interchanges actually need to

be performed. Since the factorial function grows worse than an exponential, there is a kind of

exponential behavior to avoid. See diagram "Interchange Problem" for a demonstration of how

-. ,
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knowledge of circuits solves this combinatorial problem.

Because the form of transformation rule is so simple, one can determine in advance the

effect of applying a transformation with respect to shrinking or removing circuits. The doubling

transformation, for example, removes the circuit containing the node R. Before an allilicahlI

transformation is actually used, the system performs a few simple tests to see if thr.

transformation will shrink or remove a circuit of current interest (these tests involve examininp

nodes to see if they are known or unknown). If it won't, then the transform's use is tinstpond

In this way, the form of exponential behavior described above is avoided. If disjunctions uere

allowed on the right of implications, this style of analysis would be impossible.

The mechanisms sketched out above are, of course, not sufficient for solving mote

interesting problems in program synthesis. Nothing has been said about representing arid

inaking deductions about iterative and recursive procedures, for example. The next sectirn;

hints at how the system can reason about iteration. There are other forms of combinatot ial

explosion to be avoided. To this end, attention-focusing mechanisms and local approxlmati'.,

techniques are used. There are philosophical questions like "How does one prove a rule library

correct and consistent?" that must be addressed. These are the topics of the chapters that

follow.

SIpecifications involving iteration

Iteration and recursion are fundamental features of computer programming. They becromr
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manifest in an actual program's control structure. They also occur in specifications. One would

like to be able to reason directly about looping control structures, but the undecidability of

almost any question concerning looping procedures makes the situation hopeless. Since one

cannot in general reason about looping control structures, the approach taken in this research has

been to "bury" looping in device rules.

For example, there is a SIGMA device (see diagram "Sigma Device" in chapter 4) that

contains prepackaged looping control structures for computing SUM from C, N, and a function

F:

SUM - sum M from C to N of F(M).

The device rule for the SIGMA device contains a "blank" to be filled in with "code" for thl,

function called F. This function F is to be found by the synthesis system. When the syst-ni

finds how to compute F, that knowledge is packaged into a structure called a macro-der'ice.

The key to being able to "bury" all iteration and recursion into prepackaged contirI

structures is being able to tell the synthesis system how to find macro-devices.

When the user writes a device rule that uses a macro-device, the user must alho tell th,

system how to find the macro-device when it is needed. This is always done by telling tho

system that the macro-device has certain nodes as inputs, and others as outputs. In the case of

SIGMA, terminal F-in is macro-device F's input, and terminal F-out is F's output.

Diagram "Introduction to Macro Devices" summarizes how the system responds to a

device rule in SIGMA asking for a macro-device F. Essentially, three steps are involved: first

t A,
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find the portion of the network that can perform the required computation, then package this

portion of the network into a macro-device, and finally use the macro-device in device aul.

interpretation. Later chapters will give algorithms for accomplishing these steps.

By using the macro-device mechanisms, devices for various kinds of iteration and

recursion, as well as devices like SIGMA, devices for doing bisection searches, and devices fr

power serries manipulation have been written. Transformation rules involving these devices can

ignore the fact that the devices' definitions involve looping control structures.

Related Work

Several other investigators have worked on the problem of program synthesis. Ther.

are three dimensions in which to classify these efforts: specification technique, rule form, and

control mechanisms.

One can divide specification techniques into roughly five catagories:

I. Pre- and Post- conditions [M791.
2. 1/0 relations (this work)
3. Very High level languages [Ba77], (BuT/1
4. Examples [S77], [H751 and traces (Bi76]
5. Analogy [Br77], (U77]

By providing pre-conditions and post-conditions, side effects can be specified -- 1/0 relati,ns

can only specify what the output should be. Very high level languages (weaker still) are

specifications that can (however inefficiently) be interpreted on specific inputs to obtain th

-- , .. , . -
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desired output.

As an alternative to describing the program, catagories 4 and 5 are potentially handy

specification techniques to incorporate into a large automatic programming system.

A second dimension concerns the form of rules used by the system. There are about

three broad catago, ies:

I. Axioms/Theorems (this work), [E76], [G69]
2. Rewrite rules [M79], [Ba77]
3. Others [R80]

It is amusing that Emden and Kowalski's (E76] approach also restricts itself to Horn claus,,s

Barstw [Ba77] and Rich [R80J have concentrated in building comprehensive libraries of rulp

There are three levels of interest in controlling the synthesis system:

I. Completely manual [M79]
2. Semi-automatic Apprentice approach [R791 [R80], (Bu77]
3.. Completely automatic (this work) [K7]

Kant's [K77] LIBRA system was the controller in Barstow's [Ba77] PECOS synthesizer

component of the PSI [G76] automatic programming system.

Program synthesis is on the fringe of several other areas of current research. It can b.

viewed as the task accomplished by a smart compiler for very high level languages like C1.11

[175] and Alphard [Wu76]. Weigbreit (We76] discusses such a smart compiler.

Traditionally, programming languages have tried to isolate the innocent programm 'r

from details concerning storing data structures (early examples are ALGOL's dynamic array

allocation and LISP's garbage collection). Low [L78] discusses the problem of efficient dat.

, , 1. - ' ,, L, , ,1:.I.
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structure selection.

The subjects of program specification and proving programs correct could be viewed as

the "inverse" of the subject of program synthesis. Synthesis goes from specification to programs,

while proving a program correct goes the other way. The "verification" literature is vast.

Shrobe (Sh79] suggests that understanding code, expecially when the understanding can be

modified as code is modified, is much more valuable than proving it correct.

I:-
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CHAPTER 2

INCOHERENT SOURCES OF KNOWLEDGE

Local vs. Global

The term "incoherent" in the title is not intended to refer to the expository style of the chapter

but to the "local" nature of descriptions. That is, the various descriptions (embodied in "rul-'s")

don't know about !ach other, and so they cannot negotiate cooperation in any way other than

their effects.

One way to describe the meaning of a relation like +C or *C (corresponding toi

operations of addition and multiplication) uses a computational model. Another emply's

axiomatic methods.

Using the .C relation introduced in chapter 1, if the constraint

(.C A B C)

holds, then by using a computational model one could determine a value (symbolic or numptri)

for C given values for A and B. The system uses constraint rules as a source for this kind of

knowledge.

The synthesis system also uses axiomatic descriptions. One would state the standard

associative axiom for addition as a transformation rule:

(.C A B G) and (.C G C D)

(.C A E D) and (+C B C E).

i.
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Both of these types of rules are local In the sense that they describe behavior of structure,

(devices and networks of devices) in isolation. One might think that information concerning,

when these local rules should be applied must be non-local in nature. Chapter 3 will show how

this knowledge can be (mechanically) derived from these local, incoherent sources.

Table "Knowledge Sources Summary" lists the basic knowledge sources for the system.

This chapter explains these sources in the order shown in the table. It concludes with a

complete solution to the square root problem.

A glimpse of coherent behavior

The system's deductive capabilities center on two different procedures: value propagation

(uses constraint rules) and transformation application (primarily uses transformation rules).

The system's representation of problems is primarily relational. This means that the

system must have a simple and straightforward way to extract computational representat n

from relational ones. The procedure used for this purpose is value propagation. Looking at the

diagram "value propagation example", suppose the node A has as a value the system's

expression

(,VARIABLE A)

and that nodes X. Y, Z, W, and B do not have values. The value propagation (rnr simply

propagation. though the term will also be used for the matching process) procedure finds all the

devices attached to node A. These are devices Dl, D. and D3. Each device's list of constraint
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rules is then searched to find rules with values in all the nodes corresponding to terminals in the

rule's terminal-needed list. Each device happens to have such a rule. The rules are then

interpreted. The rule for device DI under the interpretation for algebraic expressions yields for

node X (notation will be explained later):

(*EXPRESSION (PLUS (*VARIABLE A) (*CONSTANT 3.0))).

Similarly expressions will result for nodes W and Z. Finally, propagation checks to see if the

resulting expression is an improvement over the expression (if any) already in the node. If it is.

the node's value is updated. This process is repeated until either the output node (say node B)

receives a value, or until no more propagation can take place. In Stalman and Sussman [1793.

other propagation techniques are used ("plunking"). These techniques are compatible with the

Fechniques used here, but have not been incorporated into the system.

Value propagation does not lead to exponential behavior. The same wonderful accolade

cannot be given to the transform application process. Obtaining coherent behavior in applying

transforms will be a topic of the next chapter. Briefly, the steps in applying a transform are:

I. Match the pattern of the transform to the problem's network (the datum network).
2. Bind any variable-nodes. (This is probably incomprehensible, but don't worry, an
explanation is coming.)

3. See if the problem context is one that agrees with the network's applicability (for
example, can the transform reduce the size of a circuit). This step (and some of the
following) constitutes the main topic of the next chapter. Assumptions may need to be
made.

4. Match any macro-device specifications . (Ditto).
5. Check any node-independence requirements. These arise in, for example, rules for
taking derivatives (the derivative of something that doesn't depend on the variable
under consideration is zero, etc.).

6. If everything matches up properly, add the Lnstantiation part of the transform to

. bibail
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the dat,,m network.
7. Instantiate any required macro devices (see next chapter).

This chapter explains how to provide the system with all the information needed to perform

transform application. The algorithms and control mechanisms will be found in the next

chapter.

DEVICES

Problem: To say anything about computation, I need objects and something that acts on those
objects.

Solution: Nodes "contain objects, and devices act on those objects according to rules.

The basic relational and computational building block in the system is the (constraint) der'c.

The term "constraint" will be used to emphasize the relational nature, and "device" to emphasize

the computational nature of the concept. This section explains how devices are defined. For

purposes of illustration, this discussion will center on three devices used in the SORT example.

The device named "*C" is used to express multiplication and division. The device

"GREATER" expresses inequality. The device "BSFZ" finds the zero of a function by us.i.o

bisection search. Table "Three Device'Definitions" shows how these devices are described t

the system.

The statement

(MAKE-DEVICE name-of-device <name-of-term inal>)

causes the internal data structures for a device type to be set up. These structures includ,
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device templates and empty rule lists for both weak and strong constraint rules. Terminals are

like LISP lambda variables in that they are a way for something conceptually inside a device to

refer to a node outside. In this report phrases like "the terminal's value" usually are shorth.nd

for "the value of the node attached to the terminal" (where "value" is again shorthand for some

expression of a facet in the node's value structure). The casual reader can safely ignore the

distinction between "terminal" and "node."

The device type nam+ed "*C" has only strong constraint rules. These rules claim trat a

value can be computed for one terminal on the basis of values on other terminals (actually the

value structure of a node attached to a terminal can be constructed on the basis of the value

structures of nodes attached to other terminals). The statement for making a rule has the form

(RULE-OF name-of-device terminal-computed
(<term inal-needed>) expression [(cmacro-device-specification>)]).

The purpose of having macro-device specifications will be explained in the next section. BSFZ

uses a macro-device it calls F.

If one knows that X > Y, expressed as

(GREATER X Y (,MODE-CONSTANT *TRUE))

and if one also knows the value of X, then the value of Y can be constrained even though it

cannot be computed. In particular, if X - 3.0, then Y's upper bound can be computed to be 30

(or less). Similarly, from Y's value, X's lower bound can be determined. These facts about the

meaning of the GREATER constraint are expressed by weak constraint rules:

(WEAK-RULE-OF name-of-device terminal-computed

I.
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(<terminal-needed>) expression).

The te~m "weak" is used to indicate that the rule is not strong enough to constrain the value

facet of the node of the terminal computed.

Expressions are written in the device-rule language. The form of these expressions is

generally one of the following:

(type-of-construction expression)

(type-of-construiction (cexpression>)).

The types of constructions used by the system are shown in the table "constraint-nile

constructions." If the type is *EXPRESSION, then the expression itself can be used "bare"

without the tag "*EXPRESSION". Some constructions require mode expressions in certain

positions (for example, a *CASES construction does a dispatch on the result of evaluating a

mode expression). In these circumstances the tag ",MODE-EXPRESSION" can similarly be

left off. This use of modes was suggested by the representation in EL of transistor (devices) as

operating in different modes (specifically in "active*, "saturated", and "cutofr modes).

It is important that all devices in a network be satisfiable. In the initial problem

specification this means that there must exist some assignment of numeric, mode, or

"non-existant" (*NOT-EXIST constructions, see table "constraint rule constructions") vailues

such that if any device rule is Interpreted, the "new" value and existing values agree.

Macro-devices and Loops
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Problem: To solve the square root problem I want to use a bisection-search schema. This
schema says "code for finding a zero of some function F looks like this, .with blanks that
need to be filled in with code for the function F." The device rules will let me write such a
schema, except for specifying the blanks and for finding the function F.

Solution: 1 have an algorithm (Chapter 3) for finding, coding, and packaging up functions given
a specification of the function's input and output nodes. The output of this algrithm is
called a macro-device.

Subroutines and looping control structures (whether using GOTOs, DO loops, or

recursion) are fundamental to programming. The synthesis system brings a collection of novel

and powerful techniques to bear on the problem of reasoning about looping control structure.

The basic idea is to "package" the computational relationship between two (or more) nodes of a

network into a structure called a macro-device. Having the computation path in this easily

digested form lets the constraint rule interpreter use that computation to build code (and other

facets) involving looping control structures. Manna and Waldinger [M79] use an alternative

technique first presented in Burstall and Darlington [Bu771. The technique is based on the

simple idea of noting when a subgoal is an instance of the top-level goal.

As an example, the bisection solution to finding square roots is in diagram "BSFZ

SQJtT solution". The BSFZ device wants to write a code-fragment containing a DO loop to

find the zero of some function (see diagram "BSFZ"). Although the device rule doesn't really

khow what the function is, the rule says where to find the function (internally called F): it is the

function that, given a value in terminal X (node NX), will compute a value for terminal FX

(node NFX). The device rule only tells where to find the function; how to find it is a topic of

the next chapter.

S i



FUNCTION DEFINITION
INPUTS

error bound E

upper bound L
lower bound1_

ZFr
OUTPUT: zero of function "F"

LB is less than ZF is less than UB

(make-device-type bif a ub lb it fx x)

(rule-of bsfz zf (ub lb a) BLANKS TO FILL IN

('do ((bit-length (prim-div (prim- ub lb ) ~WHEN "F" IS FO0
('do-variable L.) -

B (I (prim-div (prim+. ub lb) (*constant 2.0))
I (prim-div (prim+ jade-variable lub) ('do-voriable Ib))

S ('constant 2.0)))
E S S (son (prim-$ Ionj (macro-device f ixt) ub) (*do-variable sgn))

C E H (lub ub (*cases ((primw

T A Hi (prim-sign i((*macro-device f ix) ('4.-var~able 1)1,

R E ('do-variable son))
C M (*true (ado-variable 1))
11 A (*false ('do-variable lub)))))

01ib lb ('cases ((prim.

(prim-sion('mscro-devica f ix) ('do-variable 1)1)

('do-variable son))

('true ('do-variable llb))
(*false ('do-variable 1)))))))

(7(x) (fx)))

where to look for "F"

DIAGRAM "BSIFZ"
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A macro device is specified (within a device rule) by giving a name (meaningful only

for the particular device instance), a list of terminals to be considered as inputs to the macro

device, and a list of terminals considered as outputs:

(macro-device-name (<input-terminal>) (<output-terminal>)).

Occasionally, one needs a macro-device with multi-directional functionality. For

example, one might need a macro-device with two terminals that can compute either terminal

from the other (two directional functionality). For obscure and unimportant reasons, a separate

format is used. The first direction is defined using the form above, and subsequent directions

are defined using the form

((original-name new-name) (<input-terminal>) (<output-terminal>)).

In any such construction some of the original input terminals will necessarily become output

terminals, and vice versa. An example of this construction can be found in the rules for a

device named SIGMA2, discussed in chapter 4.

The macro-device specification for F in the rule for BSFZ is

(F (X) (FX)).

If such a macro-device can be found (as it can in diagram "BSFZ SORT solution" as shown by

the dotted lines), then the device's constraint rule can be interpreted. The computational

relationship of the inputs to an output contained in a macro-device can be accessed In the rules

by a construction:

((.MACRO-DEVICE device-name output-terminal-selected) <input-expression>).

. I.
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This construction Is little more than a subroutine call, where the subroutine was written as a

result of finding the macro-device. The macro-device found for F has an extra input terminal

for node SQ (the number to find the square root of). It will turn out that these extra inputs

play several Important roles.

The algorithm for finding what nodes and devices to include in a macro-device is a

major topic of the next chapter. The computation path discovered for a macro-device (both for

constraint rules above and for transform macro specifications below) is always packaged up in

its own network.

Rule Closures

Problem: Propagating time-costs and value expressions separately causes a technical problem of
synchronization.

Solution: Rule closures are a technical fix for this problem.

When a rule of a particular instance of a device type is used to update some facet of a

node's value structure, the rule is recorded along with the new value. It is recorded in the form

of a rule closure that contains the rule, the device having that rule, and any macro-devices the

rule used. As with a rule, a rule-closure can be interpreted for various facets. The system

insures that, for example, the TIME-COST facet in a node's value structure is the cost

corresponding to the code-fragment in the CODE-EXP facet of that node by using the

rule-closure for one facet to get the expression for the other.
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Networks

Problem: I need to talk about collections of nodes and devices for a host of purposes.

Solution: Networks are a bookkeeping structure for such collections.

A network is simply a collection of instances of devices and nodes all connected together.

Certain nodes of a network are singled out as corresponding internally to the network's

terminals. For example, the following creates a network that serves as one form of the problem

statement for the SQRT example:

(define-network sqrtnet (sq sqrt orb)

(*c sqrt sqrt sq)

(greater sq (*constent 0.0) (*mode-constant *true))

(greater sqrt (*constant 0.0) (*mode-constant *true))

(error-bound sqrt orb (*mode-constant *true))

(*c (*constant 10000.0) orb sq))

Another statement (the one for the example to be solved) can be found in diagram "SORT

Problem Statement." The statement above has the form

(DEFINE-NETWORK network-name ((terminal-names>) (device-specification>)

where a device-specification has one of the following two forms:

(device-type <node-reference>)

((device-type <node-reference).) device-name).

The sequence of node-references corresponds to the sequence of terminal names in the

device-type declaraction. Naturally I have written a parser to convert "algebraic forms" into

networks, but the details of this parser are not interesting.
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Networks are basically a convenience for bookkeeping. For example, the map from

atomic names of devices and nodes to the structures named is recorded on the property of the

network.

The system creates a network whenever a macro-device is found. This network then

serves as part of the definition of the macro-device. Similarly, when the synthesis system

creates a (LISP) function to compute one network terminal from others, the relevant information

concerning how that function was written is recorded on the defining network.

Within the synthesis effort, there is always a current-network. This is the network

created by the problem statement. It serves as a data base for the synthesis system's two

deductive procedures. In particular, transform application may add devices and nodes to the

current-network.

Complex Devices

Problem: I need to express hierarchies. I can build a network out of devices, but I cannot then
use that network in building a larger network.

Solution: Complex devices are devices with networks that describe their "internal structure."

The devices discussed thus far have all been "simple" devices. They are given rules,

but they have no internal structure. It is possible to create another kind of device with an

Internal structure specified by a network. The system in fact creates these complex devices

whenever it finds a macro-device.

The role of complex devices in the synthesis process is two-fold. First, they are added

-I " "- ,. ,". - "
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to the problem network when it is necessary to copy a computation path. By using complex

devices iather than copying the constituent nodes and devices of the computation path, the

amount by which the network's size increases can be limited. The second role of complex

devices is as a form of "grey box." One of the first things the system does when trying to

improve code is to find all the complex devices actually used and expand them by creiting

copies of the nodes and devices in the defining network and adding them to the problem

network

It is also possible to create a complex device manually, although it is extremely painful

to do so.

TRANSFORMS

Problem: Deduction via value propagation is not sufficient to solve some synthesis problems.
For example, the SORT problem cannot be solved using propagation alone.

Solution: Transforms change one synthesis problem to a (hopefully) simpler one.

A transformation rule (or transform) is a type of situation/action rule. The "situatinn"

part of the transform is specified by a pattern network and certain other auxiliary

specifications. The "action" that may follow detecting the specified situation is always the

addition of devices and nodes to the current network. This action is accomplished by

Instantiating the instantiation network of the transform.

A transform is defined by a statement of the form
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(DEFINE-TRANSFORM name (<common-terminals>) (<pattern-device-spec>)
(<instantiation-device-spec>) K
[(<add-break-spec>)])

The first pattern device is always considered the *seed" device (see chapter 3). The first ]
important transform to be used in the SQORT example is the following:

"If A and C are known to be positive, and if A . B - C, then if A : I, then B (which
must be positive because both A and C are) must be less than C. Similarly. if A < I,
then C < B." That is, the range of B can be determined by a range test on A.

This transform (see diagram "Add-break in SQRT") is written as follows:

(define-transform mult-sign (a b c)

;;Pattern network:

((*c a b c)

((greater a (*constant 0.0) ((*mode-constant *true) pl)) gdl)
((greater c (*constant 0.0) ((*mode-constent *true) p2)) gd2))

.;;nstantiatlon network:
((greater (*constant 1.0) a ptostgt)

(greater b c rtestgt))
;;Here are the add-break declarations

((gdl p1) (gd2 p2)) )

The two devices named GDI and GD2 are flagged as add-break devices, to be explained in the

next section. Notice that the node named RTESTGT (which is a mode valued node) could be

computed by either of the GREATER devices.

Both the pattern network and the instantiation network have the same terminal names

(A, B, and C). When compared to the network in diagram "SRT problem statement", thes'e

terminals match up as shown:

A -> SQRT; B -> SQRT; C -> SQ.

Instantiating the instantiation network results in creating two new devices, both of type

IrI

TAi



-  -  **TRU/

0.0MODIFIED SQRT

...PI \PROBLEM

TIM0.0 GD2 and adde

GD2 is the "ADD-BREAK" B s n C eB device

MULT-SIGN TRANSFORMATION RULE 
i

PrueRP?

NoweD2mathe Add-break device copied• .0 <---and added

SQRT "D B I0

' PP2

In applying MULT-SIGN, DI 4 PDI, PI -PPI, C - SQ, A - SQRT, B - SQRT

GD2 fails to match. ADD-BREAK 
restrictions are met, so a new 

device NDI

is created. Now propagation gives:

P? = *TRUE
Now GD2 matches NDI, P2 4 P?, etc.

DIAGRAM "ADDBREAK IN SQRT"

- 65 -

-' . .. .. m . . ... . ... ... . " ... i ( ll "iL * ... "I 
.



11. Incoherent sources of Knowledge 66 Transforms

GREATER, and creating two new nodes, one for RTESTGT, and the other for a constant

value 10

Since each device in a network can be interpreted as a predicate, it is possible to prove

each rule correct, in the same way one could prove a theorem about mathematics. Because

iteration, recursion, and data structures (see chapter 4) are packaged inside devices, these issues

can be ignored when proving a transformation rule correct. Naturally, one must also prove that

device rules "do the right thing."

Having proven device rules and transformation rules correct, then assuming the rule

application mechanism performs as advertised, one can conclude that all code synthesize.d is

correct (it meets the specifications presented to the synthesis system). Better test it anyway

Just because something has been "proven" doesn't make it true!

Add-Break facility

Problem: Sometimes the system says to itself "I could match this transform to the problem
network if only I could find out if 'X?' were true."

Soluton: The Add-break mechanism lets the matcher ask "X?" and take a break while value
propagation tries to find the answer.

Suppose in the SQORT example that instead of declaring that the input (SO) was

greater than the constant 0.0, 1 had said it was greater than 1.0 as shown in diagram

"Add-break in SQORT." Then the transform MULT-SIGN above would not have matched -

a problem! The solution (discussed below) involves adding (under certain circumstances) a copy

of the pattern device that didn't match to the problem network. The pattern device that can be

--.. .. ....
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copied is flagged as an "add-break" device (the copy is added during a "break" in the matching

process).

There are several approaches to this problem, including attaching "arbitrary" predicates

to match nodes or using data-type predicates like POSITIVE, and pushing around devices to

check these predicates. For example,

(define-transform positive-declaration (x y)

((greater x y (*mode-constant *true)))
((POSITIVF y mvI) (POSITIVE x mv2) (IMPLIES mvi mva)))

This transform (not in the system!) could be used to deduce that if the input SOis greater than

1.0 then it must be positive.

There is a basic problem underlying this issue having to do with the interaction

between deduction via computational models and deduction via axioms. Under certain

circumstances a relation in an axiom can be replaced by a check with the computational model.

The add-break facility is the synthesis system's way of allowing the matcher to perform

computational checks by invoking all its capabilities of value propagation (and incidentally all

other deductive mechanisms as well). Certain devices in a pattern network can be flagged as

"add-break" devices. If the matcher cannot find one of these devices, it creates a new device of

the proper type, and any new nodes required (see below), and adds the device and nodes to the

datum network. Then value propagation is attempted for the device added. If propagation

takes place, then the match is retried (this is a very limited type of subgoal -- limited because

success of the goal does not really depend on the success of the subgoal, and the validity of th,
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subgoal deductions does not depend on assumptions made for the goal). In diagram "Add-break

In SQRT" propagation does take place, and when the match is retried it succeeds.

There are some restrictions on what devices in a pattern can be flagged as add-break.

At the time of a match, the nodes on the terminals of the add-break device will fall into three

catagories (these can be determined a priori):

MATCHED: nodes that have been matched in the datum network.

INITIALIZED: unmatched nodes that should be initialized if they are created and

added to the datum network by the add-break facility.

UNINITIALIZED: unmatched nodes that should not be initialized.

Matching add-break devices is left until last by the matcher. This means that unmatched

pattern nodes are not connected to pattern devices other than perhaps to other add-break devices

In the pattern. The add-break device must have strong constraint rules for all the uninitialized

terminals, and these rules should need only terminals with matched or initialized nodes on them.

The add-break device must not have a strong constraint rule computing matched nodes. If

these restrictions were not satisfied, then possible contradictions would be created as a result of

adding the device.

In principle those pattern devices that could be flagged as add-break devices could be

found and flagged automatically. Currently they must be specified manually. An add-break

specification has the form

(add-break-device-name cuninitlalized-node-name>).

. e
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All instances of devices meeting the criteria above have been so flagged (currently only equality

and ordering predicates are affected)

Macro-devices for Transforms

Problem: Usually I want to modify a problem network by adding devices. But sometimes
simply adding structure will cause "global" contradictions. I need to specify a portion of
network to copy, and then make the additions to the copy.

Solution: Macro-device specifications for transforms specify where to find the portion of
network to copy, and where to copy it.

Just as with constraint rules for devices, macro-device specifications can be associated

with transforms. Again, a macro-device is specified by giving a set of terminals to be

considered inputs and a set of output terminals. Just as for a constraint rule, the system creates

a network containing the macro-device's computation path. But since transform rules can add

devices to the datum network, a transform's macro-device specification , in addition to

instructions on where to find the macro-device, has instructions telling where to add extra copies

of it. The specification is written:

(DEFINE-TRANSFORM-MACRO transform-name
(name-of-m acro-device (<input-terminal>) (<output-terminal>))
<(<instantiation-network-node-names>)>)

The instantiation instructions are simply lists of instantiation-network nodes. A regrettable I
punning is always in effect between the (atomic) terminal names of a transform, the pattern

network terminals, the instantiation network terminal names, and the names of the nodes

corresponding to those terminals in the respective networks.
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Here's an example of a macro-device specification for a transform named

SINGLE-REC-GEN that transforms singly recursive 'programs' to "programs" using iteration

on two variables. Refering to diagram "SINGLE-REC-GEN" may help clarify what is going

on, but for the moment don't worry about what the transform "really does.'

(define-transform single-rec-gen (input tst output base-value depth-limit

recurse-on recursa-return nbtm base-return)

((recri depth-limit tst input output rocurso-on recurse-return nbtm base-return)

(eq? input base-value tst))

((do? base-value do-variable depth-limit tat noutl nout2 output nin2init)
(eq? base-value input tat)))

(def ine-trans form-macro single-rec-gen

(pop (recurso-on output) (recurse-return)) (base-value nout? do-varioble?))

The name of the macro-device (mostly ignored by the system) Is POP. It takes two inputs

(specified as the nodes attached to transform terminals RECURSE-ON and OUTPUT) and

produces a single output for the node attached to the transform terminal

RECURSE-RETURN. Altogether POP has three terminals.

The remaining macro-device specifications for SINGLE-REC-GEN are shown below:

(define-transform-macro single-rec-gen
(bumpinv (input) (recurse-on)) ( nout base-value))

;;nbtm Is the first value "appearingO on input satisfying the test. tn this

;;example, it will always have the value of base-value.
(define-transform-macro single-rec-gen

(s (nbtm) (base-return)) (base-value nininit))

The system's action on a transform rule's macro device specification is to package the

computation path it discovers in the datum network from the input datum nodes (specified by

- -
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the transform terminals) to the output datum nodes into a new network. This network serves as

the definition of a newly created complex device type- the type of the macro device found.

Thisfind macro device algorithm will be explained in full detail in the next chapter.

If everything goes well the instantiation network is eventually expanded so that the

datum network will have a new D02 device (a primitive for iteration on two variables), a

commuted EO. device, and some additional complex devices defined by networks created

when macro-devices were found. One of these results from the POP macro-device

specification. Recall that this device has three terminals. Originally these terminals could have

been connected to nodes eRECURSE-ON, eOUTPUT, and eRECURSE-RETURN:

(POP eRECURSE-ON *OUTPUT eRECURSE-RETURN)

where POP is the type of a complex device found to satisfy the macro-device specification (in

the system this name will always be a gensym). The instantiation instructions say that a new

device of the type of the POP macro-device should be created and. attached to the newly

expanded datum network as follows:

(POP oBASE-VALUE eNOUT2 eDO-VARIABLE2)

where @BASE-VALUE is the node in the datum network corresponding to the instantiation

network's node BASE-VALUE. Similarly, eNOUT2 and .DO-VARIABLE2 are nodes in

the datum network that were created to correspond to the Instantiation network's nodes NOUT2

and DO-VARIABLE2, respectively.
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Solution (o the "Factorial" problem

Before continuing with the sources of knowledge, let's look at a short example showing how

recursive definitions can be transformed into iterative procedures.

What does the SINGLE-REC-GEN transformation above actually do? For

non-tail-recursive functions there are two well known ways to convert recursion to iteration. The

view to take is that going "down," elements of some set are being generated, coming "up" thy

are being accumulated. If the generation order can be reversed, then the function only needs t,

come "up". and this can be done via an iteration involving two variables: one for the curlrit

element; the other for accumulation This is the transformation performed by

SINGLE-REC-GEN The other way to convert recursion to iteration is to reverse the ordt rM

accumulation. Some optimizing compilers have special cases of both of these transf,,rmati ns

built into them.

The RECRI device is a primitive for singly recursive control structures. It is defined

as:

(make-device-type recrl limit test In out down up btm sup)

(rule-of reci out (in limit)

(*recursive (((invar in))

1 imit

((*macro-device stest test) (*do-variable Inver))

((*macro-device start sup) (*do-varIable Inver))

((*macro-device pop up)

('do-variable Invar)

(*do-variable out))

(out ((*macro-device bump in) (*do-variable invar)))))

;;continued: here are macro-device specs

((stest (in) (test))
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(bump (down )(in))
(start Cbtm) (sup))

(pop (down out) (up))

The D02 device is a primitive for doubly-indexed iteration:

(make -device -type do2 in) inZ limit test outi out? result lninit)

(rule-of do? result (inl in2inlt limit)

('do (limit

(('macro-device tester test) (edo-variable lvi) (*do-variable lv2))

(*do-variable Wv)

(li ml (('macro-device bump inl) ('do-variable lvi) (*do-variable lvl)))
(lv2 in2inlt ((*macro-device bump in?) (*do-variable lvi)

(*do-variable lv2))))) .
((tester (inl Wn) (test))

(bump (outi out2) (inl In2)) )

Any relation between the two iteration variables (network structure between nodes on terminAs

INI and 1N2) is a loop invariant. The loop invariants may not (in this example arr not) ho'

strong enough to constrain 1142's initial value. For this reason the D02 device has a separit

terminal for initializing the second iteration variable.

A recursive definition of the familiar FACTORIAL function is expressed by the'

network FPROB (see diagram "Single-rec-applicationl~

(define-network rprobl (n tact)

((eq? n ((*constant 0.0) c~node) nt) dl)

((+c n (('constant'1.0) cinodul): nd) d2)

((+c Mb (('constant 1.0) cinode?) nay) d3)
((tc nd fact nv) d4)

(I(recrl n nt n fact nd nv nb nay) WS)
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Asked to write code for computing FACT from N, the system comes up with:

(DEFUN FACTORIAL (N) (INTERNAL N))

(DEFUN INTERNAL (IN)
(PROG (OUT)

(COND ((. IN 0.0)
(RETURN (PLUS IN 1.0)))

(T (SETO OUT

(INTERNAL (DIFFERENCE IN 1.0)))
(RETURN (TIMES IN OUT)))))).

In this example, the system's gensymed atoms have been replaced with italic mnemonic nani,'-

This code works, of course (if it weren't true, it wouldn't be published!) but it can be improved

If it could be converted to an iterative procedure then it might run a little faster because t0 1"

code could avoid using the (Lisp) stack.

Tail-recursive programs have the property that the input arguments are not used Aftr

the program's single recursive call. The tail-recursive to iterative transformation algorithm

should be part of every compiler's "bag of tricks." The factorial program above is not

tail-recursive, so if one wants to convert it to an iterative form, one needs a more compl,,x

transformation. The system's response to a request to improve the factorial function:

(IMPROVE-FUNCTION 'FACTORIAL)

is to commute all the .C and ,C devices. The system's library also contains other

transformations that apply, but they are all rejected in favor of using the SINGLE-REC-GF.N

transformation. The diagram "SINGLE-REC-application" shows what happens when this

tranform is applied to the network FPROB. Solid boxes with other devices inside are comp'k'.

A&%.I'gad"6"
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devices. They result from the transform's macro-device specifications, and in the cfde

sometimes show up as subroutine calls (actually function applications). Dashed boxes are

macro-devices found by constraint rule macro-device specifications. They also show up in th,

code as system-written functions.

The improved code (the system looks at the time cost to see if improvement takes placr)

is shown below. It is slightly faster, and much less readable, than the recursive FACTORIAL.

(DEFUN FACTORIAL (N)

(PROG (TEMP)
(RETURN
(O ((LVI 0.0

(PROG (NEW-LVI)
(SETQ NEW-LVi (PLUS LVI 1.0))

(SETO TEMP (TipEs LV? NEW-LPJ))
(RETURN NEW-LI)))

(LVz (PLUS 1.0 0.0) TEMP))
((- LVI N) LV2)))))

Discussion of the multi-return processing (responsible for TEMP directly, and NEW-LI' I

indirectly) will be postponed. The system failed to perform "constant folding" because lw

addition was hidden inside a system-created macro-device. In fact, normally the system rtill

perform "constant folding" as a post-processing step.

The diagram "SINGLE-REC-application" also illustrates finding and using so-callpti

constant terminals A macro-device specification (both constraint rule and transformation rule

specifications) says certain nodes (refered to by terminal names) are to be inputs. The syst,'m

may decide that in addition to those nodes, other nodes are also required and (hard to
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determine) safe to use. These are added to the macro-device's definition (a network) as constant

terminals -- so called because they are guaranteed to be "constant" with respect to the specifi-d

input/output computation path. The free test is used to determine whether this is true. It i

discussed further in the next section.

If one of the outputs of a macro-device is itself free, then with regard to that output the

macro is a constant macro-device. The synthesis system knows about these sorts of things. Thi

means that in the original FPROB network, the device named D3 could be eliminated and th,

node BASE-RETURN could be initialized as a constant 1.0 and everything would wrk

more-or-less the same (this time the constant would be folded in because the addition w (,ild.

never be refered to). In initially writing code, the RECRI's START macro-device would be a

constant macro-device.

The Free-With-Respect-To Test

Problem. In order to show Newton's method converges, I need to take symbolic derivatlwv I
could write a transformation rule for Derivative[G(x) + c] -Derivative[G(x)] pirrvid,'d I
could tell the matcher to make sure "c" does not depend on "x."

Solution: I have an algorithm (chapter 3) for determining answers to questions like that. Th"
matcher uses "free-with-respect-to" specifications to invoke this algorithm.

In the previous section it was mentioned that with respect to a given computation path

the system may need to decide whether a certain node is free or not. Examples are pointed rit

in diagram "SINGLE-REC-appication." The idea behind the free test is that if some n.deo

are inputs, and other nodes are needed as outputs, then sometimes the computation cannot tak,

AK
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place unless certain (free) nodes' values are also used, and these nodes cannot be determined on

the basis of only the input nodes.

rhe system uises a conservative algorithm to determine if a node is free with respect tc':

a specified set of inputs and outputs. This algorithm, which can err by claiming a node is not

free when it really is, will be discussed in the next chapter. For now, suppose that suich ani

algorithm exists.

If FRx) - Ax then the derivative of "FIx)" with respect to Vx is the constant "A lii"

condition one wishes to impose on this "transform" is that- A be free with respect to the

computation path from "x" to "F(x)"

Similarly, if

FMY - G(y) - NFV

and if G(y) depends on Y but NFY does not, then the derivative of F(y) with respect to "y"r

simply the derivative of 0(y) with respect to "y". Again, one wants to insure that NFY is fr',

with respect to the computation path from "y" to F(y). The synthesis system's transfo'rm ani-d

additional information to express this fact is:

;;The constant is in node RFY.

(define-transform d -minus -constant (x fx y fy nty rty or')

((deriy x Ix y rty or) (+c rny nfy fy))
((deriy x lx y fy en))

(define-fVnes-wrt d -minus -constent nfy Wy (rfy))

The DERIV device computes its second terminal by evaluating the derivative of the- funuilr,!i

computing its fourth argument from the third at its first argument (to within some error boi ind
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supplied by its fifth argument). The syntax of the "free with respect to" declaration is:

(DEFINE-FR EE-WRT transform-name terminal-to-be-checked
(<input-terminal>) (<output-terminal>))

where terminals are for the transform.

VARIABLE-NODES

Transforms are essentially a kind of pattern/action rule. The additional specificatirn

concerning finding macro-devices and test for Free-WRT only refer to nodes already matchrd

Furthermore, a match sequence can be written (see chapter 3) so that at every point in the

matching process all nodes already matched can be reached from a device matched eaili,1.

This section introduces other mechanisms for matching nodes. The synthesis system has two

kinds of what might be called "variable node" matching processes. Both have the property that

if a match can be found for the "variable node," then that match is unique. This avoids all

potential problems with cnmbinatorial blowup involving utrying all nodes."

K-variable node sI'ecifications

Problem. If I can write code for G1l(x), then I can use a bisection search to write code for ,)
Suppose I say H(x)2 = x3. Neither the code for H(x) nor for H'l(x) are self-evident, fit
the problem of writing H(x) is the same (almost) as writing square-root.

Solution: I have an algorithm that can discover that G'(H(x)) - H(x) 2 . The matcher um,'.
K-variable node specifications to invoke this algorithm.

In the course of solving the SQRT problem the system uses a transformation rul,.
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SEARCH-INVERSE stating approximately

"if you want to find a value FND between two known values U and L to within s,,rT,
specified error bound E and you happen to know a way of computing some known
value OT on the basis of FND, then a new function can be constructed that has
FND for a zerc. Furthermore, a bisection search can be used on this new function to
find FND."

The rule goes on to specify how this new function can be constructed. See diagrams

"Search-inverse" and "SQRT ready foi Search-inverse."

The difficulty in stating this transform concerns getting one's hands on the node Ih,,

transform wants to call "OT" The pattern network, macro-device specification, and

instantiation network are defined as shown:

;;The meaning of (BTWN a b c pred) is that pred is true iff a ( b < c.

;;The meaning of (ERROR-BOUND x e pred) is

;; that x has an absolute error less than E itf pred is true.

(define-transform search-inverse (u 1 ot Ind e)

;;Pattern network:

((btwn 1 fnd u (*mode-constant *true))

(error-bound fnd e (*mode-constant *true)))

;;Instantiation network:

((bsfz e u 1 Ind fxnode xnoda)

(ec fxnode ot xint)))

(dflIna-transform-macro search-inverse (mac (nd ) (ot)) (xnode xlnt))

The macro-device could be found if the system knew which node OT were, but -mce it isn't

mentioned in Ihe pattern network some further specification will be needed.

The situation is as follows.

MAC's input node (FND) has been found (e.g., matched) but it doesn't hav,' , vMl',.
yet. MAC's output OT node has not been found, but the intent is that it shriuld have,
a known value
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In this kind of situation OT is a K-variable node (the "K" is for "Known", to be contrasted

with a U-variable ("U" for "Unknown*) below). These variables are specified by:

(DEFINE-K-VARIABLE-NODE transform-name
(k-variable-terminal (assume-known-terminal>)))

The "assume-known-terminals" must all be unknown (meaning that the nodes connected mulli

not have NVALUE facets) for the specification to be met. The K-variable specificatirn for Ohw

SEARCH-INVERSE transform is shown below:

(define-k-variable-node search-inverse (ot (fnd)))

The result of applying transform SEARCH-INVERSE is shown in diagram "BSFZ SQiPT

Solution." This, by the way, completes the problem of writing the initial version of thr' cndf ft

the SQR T problem.

U-variable node specifications

Problem: In chapter 4, during the solution of the Bernoulli problem, a situation arises in which a
very powerful solution technique can be used. This technique essentially solvq a V
polynomial reversion problem -- but it needs to know what to solve the problem for.

Solution: None of the previous specifications really works, but there is an algorithm (cha.,t,,i 3)
that can find the right node to solve for. The U-variable specification is used by Ow
matcher to invoke this algorithm.

The previous section told about one kind of "variable" node in a transform. This rctinn is

about another kind of variable: the U-variable. Glancing at diagram "variable rincl

comparison" shows that in a sense U-variables and K-variables are symetric cases.

The. idea is to find a potential computation path from some "inputs" to some "outputs"

- * *.- , -
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that is being blocked because some nQde is unknown. The blocking node is the U-varrible Ali

example of how the need for such a pattern-matching capability could arise, and how 1t,

U-variable meets this need can be found in the diagram *Transform TPS-MULT-U" in

chapter 4.

The specification of a U-variable has the form

(DEFINE-U-VARIABLE-NODE transform-name

(U-variable-terminal (<input-terminal>) (<output-terminal>)))

The nodes matched by the transform's terminals (actually nodes corresponding to thp s1'ecifi-,I

terminals) in the output terminal list must be currently unknown. If a U-variable nodp is fo,,nd,

it will also be currently unknown and not one of the inputs or outputs.

The U-variable node may in fact depend (only) on the input terminals, but at tlhi tini,

the transform is being applied the nature of this dependency will not be known. It will be th'

case that the outputs can be computed if the inputs and the U-variable node are known, but not

if just the inputs are known.

DOUBLETS

All sources of knowledge have now been presented. This section explains a transformation

applied to transformation rules.

Suppose that one knows
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X - A + B ; Y A + B.

What enables one to deduce that X - Y? Furthermore, is it just that the algebraic expre"w'lns

for X and Y are the same, or is the relationship more intimate?

To answer this question without bias, the problem must be stated without an implicit

computation direction. In terms of constraints, suppose for an arbitrary constraint FOO:

(FOG X A B) , (FO0 Y A B).

Under what circumstances can one conclude that X and Y are identically the same nrde?

The two FOO devices mentioned above form a peculiar configuration. If one wet e to

call the constraint "-C" rather than "FOO", then one could record the following observations

I. X can he uniquely computed on the basis of A and B.

2. Y can he uniquely computed on the basis of A and B.

3. The relation X has to A and B is the same as the relation Y has to A and ,.

From the three facts above (known to be true for C), one can conclude that X and Y ale

identically the same node. In the event that A or B (or both) are not kn the number system, then

the number system can be extended (for the purposes here) so that facts I and 2 remain til||,

and the values do exist (a *NOT-EXIST form could be used to form such an extensirI)

Then clearly X and Y are identical. Therefore one might as well assume they are identical iiL

the unextended system (though they might be vacuously identical in that neither can receive i

numeric value).

The above is a special case of the doublet theorem. This theorem is invoked by thei
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system whenever a device terminal is attached to a node. Stated in terms of device ruls.

Doublet Theoremn: If a pair of devices of the same type are found for which a itile
exists whose terminal-needed list agrees (i.e., each terminal in the needed-list goos t:,
the same node in each device), then the terminal-computed nodes (the nodes at th,
respective terminals) are identical and can be merged.

There are a few additional conditions that need to be imposed. If the devices in question usP

macro-devices, then these macro-devices need to be computationally equivalent. Currently th,

system avoids the question of computational equivalence by simply not looking at device ril.V

using macro-devices. Some device rules are "special case" rules. These are also detectd and

ignored when applying the doublet theorem.

Devices can be merged if they argee as to type, and all terminals are identical.

For an example of the way the doublet theorem gets used, consider the networl for tho

pair of non-linear equations (see diagram "Doublet Example"):

(RI * R2) I (RI + R2) -A

R2 / (RI + R2) -B 

This network would initially contain four devices:

((+c ri r2 pl) dl)
((*c rl r2 pr) d2)
((*c pl b r2) d3)
((*c pl a pr) d4))

To solve this pair of non-linear equations for RI given values for A and B, the system hist

commutes the four devices DI through D4. It then rather blindly tries to commute th,,

commuted devices, but each time the new device is mergt with one of the originals Sn aftrr

-.. . , -. --'
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the initial spat of commutations, no new ones really take place. One of the commuted devic.

comes from device D3:

((*c b p1 r2) d5).

At this point, the system finds 30. new things to do. One of them is to apply tile

transform MULT-ASSOC3:

(def ine- transform muit-assoc3 (s y q x)

((*c s y z) (*c q x Z))

with the correspondence

X->A; 0-> PI; Y->R2;S->Rl.

The transform adds two new devices to the network:

((*c rI foo a) d6) ((*c foo pi r2) d7)

Now notice that devices D7 and D5 form a doublet. Therefore nodes FQO and B ito

Identical. This means that device D6 is really

((*c ri b a) d6)

and simple propagation will give node RI the symbolic expression A/B. Devices D5 and D7 it'

duplicates. Duplicates are automatically detected and merged. The code w~ritten by tile systomn

Is shown below:

(DEFUN SYSI (A B)
(CORD ((- B 0.0)

(COND ((- A 0.0) (ERROR))
(T (ERROR))))

(1 (QUOTIENT A 3)))).
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It is amusing that the system distinguishes between the error of trying to compute 0/0 (which

could be any value, after all), and division by 0.

Doublets and Variations of Transforms

The previous section had an example involving the transform named MULT-ASSO(C

Where did this come from? This transform is just the familiar multiplicative axiom of

associativity:

Associativity: ((a*b),c) - (a*(b*c))

AssoO3: ((s*y)Ix) - (yl(xls))

There is an automatic way to obtain all such variants of an axiom. The operation (an operaliir,.

on transforms) involves imagining what would happen if a doublet were added to the datilm

network, and then the transform were applied, and finally after the transform were applid a

newly created doublet were removed. Although this sounds like something that should he pay I

of the matching process, it really is a pre-processor operation on transforms. Diagrarr

"Derivation using Doublets" shows the steps involved.

Although this process could be automated, the current system expects it to be done by

hand. All rules have been so permuted.

Solution to SQET Problem'
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This section ties together the sources of knowledge presented above.

In the preceeding sections the original problem network and several required transfctms

have been given for the problem of finding square roots. Diagram "SQRT ready for

SEARCH-INVERSE" shows the complete network after transforms MULT-SIGN.

GT-TRANS, and BTWN-DEDUCE have been applied in that sequence. The later two

transforms are shown in table "Order Transformations." The bisection solution makes us" (it a

MPX (for "multiplex") device. This is used to select one of two values depending on whetl,,f 1r

predicate is true or false. Its definition is included in table "Order Transformations*-

The bisection code is obtained by propagation from the portion of the solution netwrr),

shown in diagram "BSFZ SORT solution." The code generated is shown below

(DEFUN SQRT-ERB (SQ ERB)

(PROG (DIR)
(SETO DIR (LESSP SO 1.0))
(RETURN (00 ((L (QUOTIENT (PLUS (COND (DIR 1.0)

(T SQ))
(COND (DIR sQ)

(T 1.0)))
2.0))

(SGN (SIGNUM ((LAMBDA (TEMP) (DIFFERENCE (TIMES TEMP TEMP)
SQ))

(coNo (DIR 1.o)
(T SQ)))))

(LUB (COND (DIR 1.0) (T SQ)))
(LL (COND (DIR SQ) (T 1.0))))
((LESSP (DIFFERENCE LUB LLB) ERB) L)

(SETQ L (QUOTIENT (PLUS LUB LLD) 2.0)

SGN SGN
LUB (COND ((, (SIGNUM (DIFFERENCE (TIMES L L) SQ)) SGN) L) (T LUB))
LLD (COND ((. (SIGNUM (DIFFERENCE (TIMES L L) SQ)) SGN) LLB) (T L)))))))

kA
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There are several ways the code above could be improved. Some of them, like getting rid of

the repeated test tO see which way to update the bounds, could easily be accomplished by

rewriting the BSFZ rule. Others, like eliminating the tests in the initialization of L, Would

involve making BSFZ a complex device, and then distributing addition over multiplexing.

Newton's method -- the basic device

The system can be asked to try improving the SQRT-ERB function it wrote:

(IMPROVE-FUNCTION 'SQRT-ERB).

This will cause the system to eventually write code using Newton's method. Newton's method

finds a zero of a function F(x), from successive approximations X(O), X(l), etc.. as shown:

X(O) - (UB + LB)/2

X(nl) - X(n) - F(X(n))/F'(X(n)).

The device with a "canned" Newton's method is NEWTON-FZ defined in table "Newton's

Method." Note that its only device rule is a special case rule. The device will find a zero only

if CONV? is known to be true.

Currently, CONV? must receive a symbolic constant *TRUE in order for

NEWTON-FZ's rule to be used. This is a limitation, but it can be overcome. The idea is to

write code with a computational convergence test and a branch to Newton's method or bisection

depending on the outcome. The system has a partially installed facility for combining a special

case with another expression so that a "run-time" check could be used for convergence, but that
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will not be needed. An even more interesting idea stems from the observation that for some

problems Newton's method does not converge in the Initial region. Then one might use bisection

until a region is found in which Newton's method does converge. The problem of synthesizing

code incorporating that scheme has not been investigated.

The number of iterations is claimed to be

log 2 (log 2 (number of intervals of size E between bounds)).

It turns out that if Newton's method converges, then within its region of convergence there is a

sub-region in which Newton's method, converges quadratically, doubling the number of bits of

precision per iteration.

The NEWTON-ZF device rule uses a macro-device with two outputs specified, so (ne

would expect the resulting code to show evidence of the multi-return facility's operation.

Newton's Met~od -- ProvLng convergence

There are a number of tests that can be used to tell if Newton's method converges. The

system uses the one mentioned in chapter 1, embedded in the transformation named

TRY-NEWTON shown in diagram "Transform TRY-NEWTON" and also in table

"Newton's Method."

The AND-C device simply performs a logical conjunction. This transform uses two

other devices that have not been seen before: DERIV and ZERO-FREE. These are defined

in table "Operator-like Devices."

..... .... -' ' '-' . ... , , 1,~~~~~~... . .......... '- s- 1:... .. ...... " -'. . , ,
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The rule for ZERO-FREE is rather interesting because it asks explicitly for the upper

and/or lower bound of one of its terminals. The weak rules are used to move bounds around.

As soon as those bounds can be propagated, the two convergence test predicates can be assigned

values. The DERIV device is willing to do a simple (but not particularly accurate) numerical

differentiation, but that will not be required for this problem.

Three transforms are used to perform symbolic differentiation In this problem. in

order of application they are: D-MINUS-CONSTANT, D-SQUARE-SPECIAL, and

D-CONST-MULT. They are given in table "Derivative Transforms.' Note in particular the

way Free-WRT specifications are used.

The Newton's method solution is produced after these transforms are applied. The

path through which bounds information is propagated is shown in 'Newton SQRT Solutic'n"

The code produced is shown below. The two loop variables are CRCT, the "correctsnn term -,

and RSLT, the most recent approximation. ABS is a standard LISP function that takes the

absolute value of its argument. Notice again the multi-return facility operation.

° ,MI
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(DEFUN SORT-ERB (SO ERB)

(PROG (MR-TEMP DIR)
(SETO DIR (LESSP SO 1.0))
(RETURN (DO ((CRCT (DIFFERENCE (COND (DIR 1.o)

(T SQ))

(COND (DIR SO)
(T 1.0))))

(RSLT (QUOTIENT (PLUS (COND (DIR so)
(T 1.0))

(COND (DIR 1.0)

(T SO)))

z.o)))
((LESSP (ASS CRCT) ERB) RSLT)

(SETO CRCT (QUOTIENT (PROG NIL

(SETQ MR-TEMP (TIMES 2.0 RSL1))

(RETURN (DIFFERENCE (TIMES RSLT RSLT)

So)))
MR-TEMP)

RSLT'(DIFFERENCE RSLT CRCT))))))

This code is fairly efficient. The multi-return temporary variable MR-TEMP didn't rnkr.

very much difference because the two, returns didn't use any intermediate results in common.

Again, there is a need to distribute addition and subtraction over the multiplexing.

Summary

The principle structural elements in this report's theory of program synthesis have b,.,n

described. This section brings them all together.

Nodes serve as a repository for various kinds of information (facets) about values. A

node's value structure is an association between facets and expressions. The various facets and
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meanings of the associated expressions can be found in table "Facets". Two distinct nodes can

be identical in any or all of their facets, and still represent distinct values.

Devices are the basic relational and computational element for the system. A device

type is defined by a device name, and a list of the device's terminal names. In order for a

device to be properly connected in a network, each device terminal must be attached to s.mP

node. Each device type may have constraint rules associated with it. There are two classes of

constraint rule: strong constrant rules that can compute values, and weak constraint rules that

cannot compute values but can still compute other facets (like bounds).

Constraint rules are written in a special rule language in which only one rule is needed

to express a "computation." The meaning of this rule is changed from facet to facet by the

interpreter. The structure of the interpreter is two-tiered. One tier is structural (expressions.

conditionals, iteration, etc.) and the other is operational (operations like addition and

multiplication). Each operation has a handler for each facet. While new structural expressions

are hard to add, a new operation is easy: simply write a handler for each facet.

In addition to refering to values at terminals, constraint rules may also refer to

computations between terminals via a macro-device facility. Besides allowing the description of

Iterative and recursive devices, the macro-device facility is used in describing devices for doing

things like summation and bisection searches (see diagram "BSFZ*).

A collection of devices and their connecting nodes forms a network. Networks have

three major uses in the system. First, LISP programs are only written for networks. Second,
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transformation rules are written by saying that if one network (the match pattern) is present as

a subnetwork (of the datum network), then another network (the instantlation pattern) may be

added (by copying) to the datum network. The third use of networks is as an implementation of

the notion of a grey box. Any device (usually considered a "black box" by the system) may have

associated with it a defining network that reveals its internal structure.

Like a device, a network has terminals. Associated with each network terminal is a

node inside the network. A network may have encoded-functions associated with it for

computing one terminal (the output of the function) from others (the inputs). These are usully

written by the system. Unlike device rules, networks have a multi-return facility; some

encoded-functions set up registers to be used by other encoded-functions (the LISP machine

multiple-value return is another way to accomplish the same thing). Code resulting from th.-

multi-return facility's operation has an appearance that will annoy structured programmers.

Transforms are objects expressing transformation rules. Fundamentally, a transfr,rm

claims that the existence of the pattern network as a subnetwork of the datum network imfpls

that the instantiation network should also be a subnetwork of the datum network. The result of

successfully applying a transform is to copy the instantiation network into the datum network.

Five kinds of suplemental information may be associated with a transform:

I. ADD-BREAK flags
2. U-variables
3. K-variables
4. Macro-devices (both pattern and instantiation)
5. "Independence" checks

&
4 .1
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Certain devices in the pattern network may be flagged by an add-break property saying "if fllis

device isn't present. create these nodes (some with Initial values) and add a device of the proper

type." In addition to nodes in the pattern network, certain auxiliary nodes may also be matched

with nodes in the datum. There are two kinds of these variable-nodes, with correspondingly

different selection algorithms. U-variables are matched with nodes in the datum network whose

values are currently unknown. K-variables are matched with nodes whose values are known.

Finally, macro-devices can be found and copied as a result of applying a transform, and can be

used in determining if some nodes are "independent" of others.

This completes the brief (but complete) list of the system's sources of knowledge

Currently the system needs to be told certain other things having to do with controlling

transform application, but the next chapter will explain how this information could be

automatically derived by a pre-processor.
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TABLE'FACETS'

Facet-name type of exp. meaning

NVALUE symbolic: description of the value

COOE-EXP code-fragment: If executed in proper environment this

fragment would compute the numerical value for this node

TINE-COST symbolic: Time executing the code-fragment would take

(including time-cost of arguments)

NODE-USED special: Nodes whose value was used in obtaining this

node's value. Divided into

definitely-used and possibly-used

parts.

LSOUND symbolic: Lower bound for value

USOUND symbolic: Upper bound for value

ERROR-BOUND symbolic: Maximum amount by which "true value

may differ from "computed value."

TYPICAL-VALUE numeric: Example of a typical value this node might have.

(not implemented)

These facets are relative to a particular set of inputs



II. Incoherent sources of Knowledge 105 Tables for Chapter 11

TABLE 'CONSTRAINT-RULE CONSTRUCTIONS'

(*CONSTANT numeric-value) This is obvious, the TIME-COST interpretation is
(*CONSTANT 0.0). The numeric value must be a floating-point number.

(*MODE-CONSTANT mode-value) Modes are things like *TRUE and *FALSE. The
distinction between modes and numbers is used by several algorithms. The notion of a
"mode" was suggested by EL's transistor model.

(,EXPRESSION expression) The expression is interpreted by refering to the handlers of the
function names for each facet.

(*MODE-EXPRESSION expression) Just like *EXPRESSION except a mode value (either a
constant or an expression) is returrned.

(*VARIABLE atom) This symbol is passed around as a value. The TIME-COST
interpretation is (,CONSTANT 0.0). Generally, an atom in an argument position t, a
function will mean the device's terminal.

(,NOT-EXIST atom) This is something like a *VARIABLE except it is not a value. 1he
atom is an indication of why the value doesn't exist. For example, division by zero will
generate one of these symbolically. This is not used very often.

(.ANOMALOUS atom) Similar to a non-existant value. The difference is illustrated by
considering what it would mean for a node to be assigned both an *EXPRESSION and a
*NOT-EXIST construction (a contradiction!), as compared to being assigned both an
*EXPRESSION and an *ANOMALOUS construction (not a contradiction).

(*CASES (mode-expression <(mode-symbol expression)>)) The interpretation of this is that th
result of evaluating the mode-expression is a mode-symbol (like *TRUE or *FALSE).
The value represented by a *CASES is then the value represented by the expression
corresponding to this mode-symbol. Naturally if the symbol is not known because tli
mode-expression resulted in a ,MODE-EXPRESSION construction, then a *CASES
construction results. Some *CASES expressions are said to be special-cases because the
expression for one of the listed mode-symbols is NIL.
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((*MACRO-DEVICE device-name terminal-selected) <expression>) This construction is
described in the text. The significance of the sequence of expressions is that they
correspond to the sequence of device terminals declared as "inputs" to the niacro-devc,
The terminal-selected above is one of the terminals declared as an output terminal in th,'
macro-device specification.

(,EXTERNAL-NODE node) This should never occur in a rule. It is used by the system to
process extra terminals in macro-devices.

(*DO (limit test result <(variable initial iteration)>)) where limit is an expression whose value is
an upper bound on the number of times the variables will need to be updated before test
becomes *TRUE. Test is a mode-expression. Variables are do-variables, and may be
used in the expressions for result and iteration. The initial expressions may not refer to
do-variables. The interpretation is quite similar to the LISP DO construction, except that
there is no provision for anything "inside" the loop other than incrementing do-variables.
All initializations are assumed to take place "in parallel," but iterations take place
sequentially. By clever use of multi-return macro-devices, any combination of
parallel/sequential iterative assignments can be obtained.

(,DO-VARIABLE atom) This can only occur inside a *DO or a *RECURSIVE constructiron,
and refers to the most recent value assigned to the variable named. There is a problem if
an expression like this is used in a TIME-COST facet. The NVALUE interpretation of
this form is the same ,DO-VARIABLE form. Time-cost interpretation is 0.0. Althogh
not completely satisfactory, these forms are replaced by the "limit's" NVALUE
interpretation whenever they occur in a time-cost expression (see chapter 4 for brief
discussion).

(*RECURSIVE ((<(input-variable expression)>) limit test start-up upward <(variatle,
<expression>)>)) This is the most complex construction.The idea is that if test is true, then
start-up is returned. Otherwise recursive calls are used to set all the v'ariables
(simultaneously), and then upward is used to obtain the value to return. Limit is the imit
to the depth of the recursion. Each entry (variable <expression>) is a recursive call to the
code described by the *RECURSIVE construct. The number of these entries is the order
of the recursion. Input-variables and variables are atoms, and are refered to within the
limit, test, start-up, upward, and expression as (*DO-VARIABLE atom). Th.'
expressions for the input-variables are the values those input variables should have at th"
outermost call. The start-up and expressions cannot use the atoms in the variable slot.
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TABLE "KNOWLEDGE SOURCES SUMMARY"

(MAKE-DEVICE name-of-device <name-of-terminal>)

(RULE-OF name-of-device terminal-computed
(<terminal-needed>) expression [(<macro-device-specification>)]).

(WEAK-RULE-OF name-of-device terminal-computed
(<term in al-needed>) expression).

See table "constraint rule construction" for how device rules are written.
Macro-devices are always specified by a name and a list of terminals:

(macro-device-name (<input-terminal>) (<output-terminal>)).
Multi-directional capabilities are added with specifications like:

((original-name new-name) (<input-terminal>) (<output-terminal>)).

(DEFINE-NETWORK network-name (<terminal-names>) <device-specification>)

(DEFINE-TRANSFORM name (<common-terminals>) (<pattern-device-spec>)
(<instantiation-device-spec>) [(<add-break-spec>)]

Add-break devices are specified by:
(add -break-device-name <uninitialized-node-name>)

(DEFINE-TRANSFORM-MACRO transform-name
(name-of-m acro-device (<input-terminal>) (<output-terminal))
<(<instantiation-network-node-nam es>)>)

(DEFINE-FR EE-WRT transform-name terminal-to-be-checked
(<input-terminal>) (<output-terminal>))

(DEFINE-K-VARIABLE-NODE transform-name
(k-variable-terminal (<assume-known-terminal>)))

(DEFINE-U-VARIABLE-NODE transform-name
(U-variable-terminal (<input-terminal>) (<output-terminal>)))

Chapter 3 explains one more (derivable!) source of knowledge
See table "Transform Types" (chapter 3) for meaning of "type":
(DEFINE-ENABLEMENT transform-name type

<((<outline-terminal>) (<input-terminal>) (<output-terminal>))>)

..................................................... ..-.. = I.... 1... I .. m
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Table 'Three Device Definitions'

(MAKE -DEVICE- TYPE 'C A B C)
(RULE-OF 'C C (A B) (PRIM* A B))

(RULE-OF 'C A (B C)

('CASES ((PRIM- B (*CONSTANT 0.0))
(*TRUE (*CASES ((PRIM. C (*CONSTANT 0.0))

('TRUE ('ANOMALOUS Z-DIV-Z))

(*FALSE ('NOT-EXIST DIV.SY-ZERO)))))

(*FALSE (PRIM-DIV C B)))))

(RULE-OF 'C B (A C)

(*CASES ((PRIM= A ('CONSTANT 0.0))

(*TRUE ('CASES ((PRIM- C (*CONSTANT 0.0))

(*TRUE ('ANOMALOUS Z-DIV-Z))

('FALSE ('NOT-EXIST DIV-BY-ZERO)))))
('FALSE (PRIM-DIV C A)))))

(make-device-.type bsfz e ub lb zf fx x)

(rule-of bsfz zr (ub lb e)

('do ((bit-length (prim-div (prim- ub lb ) 0))
(prim-less (prim- ('do-variable lub) ('do-variable Ilb)) a)

('do-variable 1)
(I (prim-div (prim+ ub lb) ('constant 2.0))

(prim-div (prim+ ('do-variable lub) ('do-variable llb))

('constant 2.0)))

(sgn (prim-sign (('macro-device f fx) ub)) ('do-variable sgn))
(lub ub ('cases ((prim-

(prim-sign (('macro-device f fx) ('do-variable 1)))
('do-variable sqn))

('true (*do-verlfle 1))

(*false ('do-variable lub)))))

(11b lb ('cases ((prim-

(prim-sign (('macro-device f fx) ('do-variable 1)))
('do-variable sgn))

('true ('do-variablet llb))

(*false ('do-variable 1)))))))
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(make-devlce-type greater bg iti p)
(rule-of greater p (bg Mt)

(*made-expression (prim-loss Itl bg)))

(week-rule-of greater bg (p iti)
(*cases (D

(*true (lower-bound-op itl))

('raise nil))))

(weak-rule-of greater itl (p bg)
(*cases (p

(*true (upper-bound-op DO)
(*false nil))))

Syntax explained in table "constraint rule constructions.*
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Table *Order Transformations"
(define-transform gt-trans (a c gtest)

((greater a b gtost)

(greater b c gtest))b

(define-enablement gt-trans remove I nil (a c) (9test)))

(dfne-trans form btwn-deduce (a b c dirtest)
((greater a b dirtest)

(greater b c dirtest))

(mxa c dirtest upper)
(btwn lower b upper (*Mode-constant *true))
(mpx t a dil-test lower)))

(define-enablement btwn-deduce range ( nil (a c) (b)))

;;HERE IS THE DEF INITION OF THE MPX DEVICE:

(make-device- type thpx tv Tv slct rsit)

(rule-of opx rslt (tv Tv slct)
(*cases (aict (*true tv)

(*false fv))))

(rule-of mpx tv (rslt slet)
(*cases (sict (*true 'slt)

(rule-of mpx tv (rslt sict)

(*cases (slct (*true nil)

(*false rslt))))
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TABLE "NEWTON'S METMOOG
(make-device -type newton-fz conv? a ub lb zf fx x divix)

(rule-of newton-fz zi (cony? ub lb a)

(*o((bit-length (bit-length (prim-div (prim- ub lb) e)))

('mode-expression (prim-less (prim-abs (*do-variable crct)) e))
('do-variable rslt)

(crct (prim- ub lb)

(prim-div (('macro-devIce f ix) (*do-variable rslt))
((*macro-device f divfx) (*do-variable rsut))))

(rslt (prim-div (prim+ lb ub) (fconstant 2.0))

(prim- (*do-variable rslt) ('do-variable crct)))))
(*ralse nil)))

; ;Macro-device

((f (+x) (fx divix))))

(def ine- transform try-newton (e u I fnd x fx)

((bstz e u I fnd ix x))I
((newton-fz cvtest e u I fnd Vs x dinx)
(end-c cvtestl cvtest2 cvtest)

(zero-tree cvtestl u I x dinx)

(zero-free cvtest2 u 1 nx2 ddnfx2)

(denyv x dtnx x fx a)
(deriy nx2 ddntx2 x dinx e)))

(defint-anablement tv-y-newton speedup Intl (u I1.) (fnd)))
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TABLE "Operator-Mike Devices'

(make-device-type zero-free pred upper lover x-ft tg-out)

(week-rule-of zero-free x-in (lower)

(lower-bound-op lower))

(weak-rule-of zero-free x-in (upper)

(upper-bound-op upper))

(rule-of zero-free prod (fx-out)

(*mode-expression

(prim-or (prim-less (*constant 0.0) (lbound- fx-out))

(prim-less (ubounds fx-out) (fconstant 0.0)))))

(make-device-type OERIV In-eval out-evel x-def fx-Oef ebserr)

(rule-of deriv out-eval (in-eval abserr)

(prim-div

(prim-

((*macro-device fun fx-def) (prim+ in-oval abserr))

((*macro-device fun fx-def) (prim- in-oevl obserr)))

(prim* (*constant 2.0) abserr))

;;Nacro definition

.((fun (x-det) (fx-del))))
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TABLE "Derivative Transform$'

*;RFY a F(y) - constant

;;The constant is in node NFY.

(define -transform d-minus -constant (x fx y fy nfy rty or)
((deriy x (x y rfy er) (+c rfy nty fy))

((denyv x rx y ty or*)))

(define -free-wrt d-minus -constant nfy (y) (rny))

(dot ine-anablement d -minus -constant reduce (nil (x) (ix))

(define -transform d- square- special (x ix)
((denyv x ix y ysq err) (*c y y ysq))

((*c (*constant 2.0) x fx)))

(define -enableament d- square- special remove (nil nil nil))

;;The instantiation portion of this rule is unfortunate because what I really want to say
;;Is simply "merge nodes FX and NFY*. But I cannot (for no particularly good reason). so I

;;need to go around the bush a bit

(der ine- tranaform d-const-mult (x ix y fy nty)
((denyv x ix y fy err) (*c nfy y fy))

((*c fx y fy))

(define -free-wrt d-const-mult nfy (y) (fy))

(define-enablemnt d-const-mult remove (nil nil nil))
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CHAPTER 8

COHERENT BEHAVIOR

In chapter 2 the system's sources of knowledge were presented and explained. The problem

addressed by this chapter is to obtain coherent behavior from these isolated, local sources of

knowledge.

All researchers have an Intuitive notion of what "coherent behavior" means: if the

problem solving system "does it like I might," then It is coherent. A more objective quantitative

measure of coherence is the ratio of the time taken by the system to the observed difficulty of

the problem. As in chapter 1, the observed difficulty of a problem is the number of rule

applications that, in retrospect, were actually required. In what follows, terms like "polynomial

behavior", "exponential behavior," etc., will always refer to this ratio.

The principle effort of this research has been to eliminate exponential behavior from

rule-based problem solving, at least as applied to numerical program synthesis. For the most

part, this effort has been successful, in that exponential behavior does not occur in any of the

test cases. The remainder of this chapter explains how this has been accomplished.

The To, Level

The basic top level for both initially writing code and later improving it looks like



IM. Coherent Behavior 115 Top Level Organization

TOP LEVEL
(INIT) List of previous matches is empty

LOOP r
(PROP) propagate all value structures
(TEST) if outputs have values (improved values if

improving code), then write code and quit
(FIND) Find all new matches, and add any found to front

of list of previous matches
(SELECT) Search list of previous matches for best one to apply
(APPLY) Apply it. Go to LOOP

The three steps PROP, FIND, and APPLY can all be shown to be polynomial in the number

of devices in the problem network (see individual sections following). Except for add-break

devices, the problem network's size is only increased by the APPLY step. Since there is some

maximal size of transformation rule instantiation network, the total number of devices added to

the original problem network is bounded by a linear function of the number of rules appl,'d.

(One reason transformation rule macro-device specs create a new complex device rather than

causing the computation path found to be copied is so that this observation will hold).

Add-break devices unfortunately make a more precise argument difficult.

A lower bound on the system's time cost is provided by the FIND step. If N is the

number of devices in the solution network (this is the original problem network with all the

devices added by all the rules applied), and M is the maximum size of any transformation

rule's pattern netwok, and there are K transformation rules, then step FIND will take (for each

time around the loop) time bounded by (see below):

K*NM

This is, of course, a polynomial in N, which is in turn a polynomial in the number of rules

'IN
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applied. This worst case never occurs in practice.

As one might have suspected, the critical problem is how to select, from a number of

applicable rules, the correct rule to actually apply (or, rather, how to avoid making poor choices)

The next section gives a solution to this problem. But first, a more detailed descriptin of the

top level is needed.

Matche and Ps1tedo-devices

The matching process will be.completely described later in this chapter. But some facts ;ah',,ta

it are needed now.

Transforms are typed according to a scheme to be described later (see tahle

"Transform Types"). Whether an effort is made to find a match for a transform's llatt,'rn is

determined (in part) by this type. These types are ranked in a strict sequence. In grieral. the

matching process doesn't go further in this sequence than necesssary.

A transform's pattern network is examined by a pre-processor. Starting with a -s,,d-

device (manually selected now), a match sequence is created with the property that eich device

(except the *seed") in the pattern is reached from a node already matched.

This match sequence is then used to control the way an object called a partial match is

propagated in the datum (problem) network. This propagation procedure may add devices to

the network corresponding to those flagged as add-break devices in the pattern network. \Wh,0n

all devices in the match sequence have been matched, then the partial match is said to be

* c~S~y.i~j t*., - I
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completed. At this point, macro-device specs, U-variable nodes specs, K-variable node s$,cs.,

and "free-wrt" specs still need to be processed.

All completed partial-matches are further processed by being instantiated. This

process creates a structure called a psuedo-device (used instead of real devices for efficiency)

that is hooked into the problem network in a way similar to the way a device is connected. Like

a device, a psuedo-device has terminals. These are the same as the transform's terminals, and

are connected to the nodes matched by the appropriate pattern nodes. This instantii;t, I of

partial matches also makes sure all U-variable and K-variable specifications have teen

satisfied. After instantiation all transform terminals have been matched.

The FIND step of the top level involves both partial match propagation and

intantiation of partial matches. The SELECT step actually examines a list of psuedo-devices.

and only looks at the terminals of these psuedo-devices.

To apply a transformation rule, the psuedo-device created for the complet,'d ,artil

match corresponding to the transform's pattern network is expanded. Expanding a

psuedo-device involves satisfying all macro-device specs, performing all Free-wrt tests, and

finally adding all the transform's instantiation network's devices and nodes to the problem

network.

To summarize, the system's top level looks like

TOP LEVEL (detail)
(INIT) Initialize list of psuedo-devices to nil

for initial writing, and to old list for
improving code.

I.

1 I.
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Set remembered type to *RESTATE."
LOOP

(PROP) propagate all value structures.
(TEST) if all outputs have values (improved values if

improving code), then write code and quit.
(FIND) For all new devices, try starting partial matches if

transform's seed matches.
Propagate partial matches according to schedule,

down to and including remembered type.
Possibly create and add "add-break" devices

Instantiate all completed partial matches:
Satisfy K-variable specs.
Satisfy U-variable specs.

Add new psuedo-devices to front of list.
(SELECT) Search list of Fsuedo-devices to find best one to apply.

Only the terminals of the psuedo-devices are examined.
(APPLY) Expand selected psuedo-device:

Apply Free-wrt tests.
Satisfy macro-device specs.
Add instantiation-network nodes and devices.
Add required macro-devices as complex devices.
Remember type of transform responsible for

expanded psuedo-device.
Go to LOOP.

Deciding Which rule to apply

In order to decide which rule to apply (or, more specifically, which psuedo-device to expand).

the system uses the results of a preprocessing analysis of the possible effects of thr

transformation rules. The results take the form of a classification of types of effect, and a list

(called the enablemnent) of the circumstances under which this effect may be obtained.

There are two different kinds of problems the synthesis system solves: initially writing

.&WAWA



111. Coherent Behavior 119 Which rule to apply

code and improving code already written. Although the principles behind the rule s'kllcltn

mechanisms are the same for both kinds of problems, the mechanisms themselves are differl.nt

The emphasis in this section is on the initial writing problem.

At any point in the deduction process, certain nodes will have values (be known), and

others will be unknown. In addition to this division among nodes in the problem network, the

selection mechanism maintains three lists of nodes as assumptions. One result of c(,.cdirig tr.

apply a rule (that is, expanding a psuedo-device) is to add nodes to the variaous a'i-tinption

lists.

The selection mechanism looks like

SELECT (but see detail below)
For each psuedo-device, see if the enablement is satisfied

If so, record the number of additions to the assumptions required.
Select the psuedo-device requiring the fewest additions. In case of tie, pick the

earlier in the pstiedo-device list.

The tie-breaker above encourages depth-first search. The following sections discuss the selection

mechanism in complete detail.

Circuits

As was mentioned in chapter I, the main thing one wants to do in trying to solve a problem is

reduce the size of circuits, and remove them when possible. Globally, a circuit is a directed

sequence of devices (see diagram "circuit definition") and nodes whose values are unknown s*,ch

that



Dl outline D2 outline

0 2

D3 outline

DIAGRAM "CIRCUIT DEFINITION"

"SEED"
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S PLUS

DIAGRAM "FUNNY-ASSOC"
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I. Each circuit node appears as the node computed by a device rule of a circuit device
2. Each rule above has as nodes in the needed list only circuit nodes and outline r
nodes.
3. All outline nodes are known (and only nodes needed for 2 are outline nodes).

The diagram illustrates a typical circuit. Note that outline nodes can be shared, and that

several of the nodes needed by a rule can be circuit nodes.

This definition cannot actually be used because the third restriction (outlines must be

known) is too strong. In operation it is replaced by a weaker criteria: outline nodes should be

known or assumed known, or otherwise singled out (details follow).

The system does not actually find circuits, both because that would be a gihal

operation and because the number of circuits grows exponentially with the number of devices

(among other things, the assumptions cause this exponentiallity). Fortunately, on the basis of

local evidence one can determine whether a portion of network could potentially be part of a

circuit. This forms the basis of the selection mechanism.

Classlfication of Transforms

The "funny-associativity" transformation rule was mentioned in chapter I. It is reproduced

below, and also shown in diagram "funny-assoc":

(OEFINE-TRANSFORM FUNNY-ASSOC (Q R S E)
((+c Q R 0) (+c o t E)) ((C R S F) (+C F Q E)))

There are four ways this transform could reduce the size of a circuit. The outline nodes codd

be 0, and E, or they could be R and S. For each of these outline node sets, either of the
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remaining terminals of the transform could be the input of the directed circuit.

The above analysis is typical of the preprocessing required for each transform. The

type of effect of the transform is to REDUCE the size of a circuit, and the four collections of

outline, input, and output nodes are the enablements. In principle, this analysis could be

automated, but the current system requires these to be entered by hand (automated analysis

would be at least exponential in the number of terminals). This is done once as part of the

transform's definition.

The form for stating an enablement is

(DEFIN E-ENABLEMENT transform-name type
<((<outline-termina>) (<input-terminal>) (<output-terminal>)),)

For example, the enablement for FUNNY-ASSOC Is:

(define-nablement funny-assoc REDUCE ((r 1) (q) (i))

((r s) (e) (q))
((q e) (r) (3))
((q e) (s) (r))).

There are six possible types of effect a transformation rule may have. The type of a

transform, as defined in table "Transform types," is used to decide what partial matches to try

propagating. The sequence used for initially writing code is:

REMOVE SUMMARIZE REDUCE RANGE RESTATE SPEEDUP.

For improving code the sequence is very similar; the SPEEDUP type is moved to between

REDUCE and RANGE. These sequences are quite reasonable considering the semantics of the

types.
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Tfties of transformation rule aptlication

As explained in the previous section, enablements have the form of a triplet of lists of

transform terminals:

((<outline>) (Oinput>) (<output>))

where the computation path being affected or resulting from the application of the rule is

specified as going from the inputs to the outputs. Although not apparent from the discts.ion

thus far, this computation path is not necessarily actually usable because, for example, a device

rule might require a macro-device that cannot actually be found. However, the genei al id,..l is

that the computation path also uses the (presumed) known values of the outline terminals in the

course of propagating a value from the inputs to the outputs.

There are two very different ways to use a transformation rule. The distinctions are

most easily seen by considering a REDUCE transform. Supposing one could take a global view

of the problem network, one would notice that there are two kinds of circuit (assuming certain

outline nodes are known when they aren't really) those containing the desired output or nod"'

leading to immediately being able to compute it, and those not containing it or any nod.7

immediately leading to being able to compute it. In fact, both of these circuits should be

reduced in size, but the local circumstances under which they should be reduced are different.

Diagram "Two linear equations problem" contains a circuit, and the circuit contains the

desired output Y. The pattern for FUNNY-ASSOC matches this problem with

Q.-> B, R-> Y, S -> Y, E -> A.

. ' I .
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INPUTS: B, A
OUj.PUT: Y

diagram "TWO LINEAR EQUATIONS PROBLEM"
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One of FUNNY-ASSOC's enablements describes a situation where the transform's output is

*helpful" in computing the desired output:

((Q E) (S) (R))

(reversing S and R doesn't matter, so that enablement also works). This kind of application is

unimaginatively called a TYPE-B application; it is distinguished (basically) by all of the

outline nodes being known, and the outputs leading to the desired problem solution.

Diagram "Three linear equations problem" Is more complex. Firstly, with only nodes A.

B, and C assigned values, there are no circuits in the diagram by the definition given above.

However, if the single node Y (the desired output) is allowed as an outline node, then the circuit

shown in the diagram does meet the definition.

The transform FUNNY-ASSOC matches the problem diagram several ways, but the

two of interest are when the seed matches device Al, and when it matches A5 (respectively):

Q.-> X, R -> Y, S -> A, E - Z

0--> Z. R ->Y. S ->C, E ->X

In both of these matches, the global view containing the circuit in the diagram, the desired

output (Y) is in the outline. This is the distinguishing feature of a TYPE-A rule application.

To summarize: there are two ways to apply a transformation rule. In terms of its

enablements, the outline can contain the desired output (TYPE-A), or the circuit can contain the

output (TYPE-B). The next section gives the details of the tests used to determine if a

transformakon rule should be applied.

I.
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DIAGRAM "THREE LINEAR EQUATIONS PROBLEM"
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As..umitions and Enablements

The syw;em uses three lists of nodes to help determine if a particular transform should b,

applied, and whether the application is TYPE-A or TYPE-B. These assumption lists are

modified as a side-effect of the selection algorithm. Basically, these assumption lists are used as

an attention focussing mechanism. They are:

*ASSUM E-KNOWN -- These nodes don't have values, but the selection algotithm has
previously treated them as if they were known.

,ASSUME-UNKNOWN -- These nodes are thought to be computationally "close" to the
desired output, in the sense of leading Immediately to being able to comput-, the
output if they are known.

*REDUCE-GROUP -- These nodes are thought to belong to a circuit for which TYPE-A
rule applications are appropriate.

Both TYPE-A and TYPE-B applications have several conditions In common. One is that all

outline nodes should be distinct (that is, no duplications should occur in the outline). The

reasoning behind this restriction is that if outline nodes (that is, nodes attached to the

psuedo-device's terminals specified as outline terminals in the transform's enablement under

consideration) are duplicated, then there ought to be a special case rule to deal with it. Also se,

diagram *Why no duplicates in outline" for an example of the kind of trouble this restriction

eliminates.

Another restriction both TYPE-A and TYPE-B applications have in common is that

the output nodes must in fact be unknown. If they were known, then the path could not be part

of a circuit. This restriction must be altered when improving code.
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The complete list of restrictions can be found in table "Enablement Tests for Writing

Code.* Notice that if the enablement has an empty outline, then TYPE-A fails and TYPF-P

becomes simply "outputs are unknown."

The restrictions in table(s) "Enablement tests for writing (improving) code" w're

derived empirically. Although they "work" for all the examples in this report, they might noed

further refinement.

The assumption lists are initialized as shown below:

*REDUCE-GROUP, *ASSUME-KNOWN are initially empty

,ASSUME-UNKNOWN initially the desired output nodes

Ertendin, and cutting back on assumpitions

There are two ways the assumption list can be consistently extended. If one assumes that some

collection of nodes is known, then one can determine what nodes are also known. This

ALSO-KNOWN extension is the basis of both assumption extension mechanisms (rules

Involving macro-devices and special case rules are not used in finding this kind of extensioin).

For example, if x is assumed known, then "y "x 2 13 would be in the also-known extension of

Whenever, as a result of analyzing an enablement and on that basis applying a rule, the

system adds some nodes to the *assume-known assumption list, the also-known extension is Also

added, provided it does not intersect ,assume-unknown.
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Similarly, when trying to minimize the number of new nodes being added to
*assume-unknown, if two enablements both would cause the same number of additions, then if

one addition constitutes wisiful thinking (described below), it is prefered. A perhvps u'eful

refinement of this would be to compute the "wishful thinking distance," but this has not been

tested.

Wishful-thinking is straight-forward to test for: if the also-known extension of the

addition to ,assume-unknown would result in nodes already in ,assume-unknown being known.

then the addition constitutes wishful thinking. It would be simple to also measure the smallest

number of devices involved in obtaining any such node already in ,assume-unknown.

The sequence of additions to the assumption lists is retained. Since it is inconsistent for

a node in *assume-unknown or *reduce-group to have a value, these lists are trimmed back to

the state they were in before the node (now) having # value was added. No such inconsistency

occurs when an ,assume-known node receives a value. But to simplify the code, these known

nodes are removed from the *assume-known list.

The complete criteria for which rule to select (which psuedo-device to expand) can now

be given:

SELECT (detailed)
Pick the rule with the highest type (in the transform type order being used).
Among rules of the same type:

Rules that add to ,reduce-group are WORSE than those that do not.
The number of additions to *reduce-group is minimized.
Rules that add to *assume-known are WORSE than those that do not.
Rules that add to *assume-unknown are WORSE than those that do not. Among

rules that add to ,assume-unknown:

- I'
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The fewer the number of additions to *assume-unknown, the better.
Among rules adding the same number of nodes to *assume-unknown.

wishful-thinking additions are better.
All things being equal, pick the rule most recently matched (depth-first preference).

The selection algorithm above is used to compare two potentially applicable matches (more

correctly, the psuedo-devices resulting from instantiating the completed partial match). After

sweeping through all applicable psuedo-devices, a psuedo-device to expand is thus selected.

SPteial Aandling for Macro Devices

The discussion thus far has ignored the presence of macro-device specifications in device rules.

Under certain circumstances these specifications can affect the assumption lists.

Device rules assert that some computational relation exists between the needed terminals

(inputs) and the terminal determined (output) of a rule. But there is also some kind of

connection between a device rule's needed terminals, and the terminals specified as inputs to a

macro-device used by that rule.

Suppose, as in the square-root example, the system knows

X2 ,Y; X > O, Y > 0

and that given Y, it is to write a program to compute X. Then the node for X would be on the

*assume-unknown assumption list, and Y would have a value. This problem (for which a

solution has already been given) can be modified so that instead of simply computing the

square-root of Y. the system is asked to compute the sum of square-roots of the numbers 1.0 to Z,

Inclusive. This problem is illustrated in the diagram "sum of square roots. In this diagram it

II



I1. Coherent Behavior 131 Which rule to apply

should be obvious that if the system were to add node NSX to ,assume-known and node NSFX

to ,assume-unknown then as far as the rule-selection mechanisms are concerned, this problem is

about the same as the original square-root problem.

It should come as no surprise that the system has a rule-

Inward Macro-device Assumption Extension: If all a rule's needed-node list is
known, and the node determined by that rule is unknown, and that rule uses
macro-devices, then add the macro-device's input nodes to *assume-known, and the
macro-device's output node(s) to *assume-unknown.

Perhaps more surprising is that the system also extends assumptions in the other direction:

Outward Alacro-device Assumption Extension: If any of a rule's macro-device input
nodes are known, then add the rule's needed nodes to ,assume-known. Furthermore,
if the macro-device's output node(s) are unknown, add the rule's output to
,assume-unknown.

The Bernoulli example (in chapter 4) shows a case where this extension is needed.

Diagram "Bernoulli problem statement" shows the initial situation. The result of using the rule

above on the device TPS (term-wise Power Series) is to add NT to *assume-known, and add

PSX to ,assume-unknown. This allows the system to become interested in expanding the

exponentiation device EXP. The complete solution to this problem is the backbone of chapter 4.

Examle. Three linear equations Solution

Diagram "Three linear equations" shows the network expressing the following system of linear

equations:

(x * y)+ A -z
(x • z) 4 B - y

L .. I..
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Enablements: ((A D) (B) (0)) ((B C) (A) (D))
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+ASSOC-4
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Enablernents: t(Q X) (S Y) ((Q X) (Y) (S))

HEDICE
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(z y) C -x

This diagram and set of equations will be used for two different problems. One (let's call it

LE3) is "Write code for computing Y given A, B, and C." The other (LE2) is "Write code for

computing Y given A, B, C, and X." The second (LE2) is a simpler problem, but it has srme

redundant facts in it. Most problem-solving systems blow up when given too much information,

this system does not

The diagram "Three linear equations" also shows three associativity rules.

FUNNY-ASSOC and +ASSOC are almost identical -- the only differences involve comiting

the arguments. Most problem-solving systems blow up when given redundant rules; this sys. ,m

does not. Each of these transforms are of type REDUCE and have four enahlements

*ASSOC4 is derived from +ASSOC by doublet introduction and deletion (see diagram

"derivation using Doublets" in chapter 2). Since the rule is symetric, only two enablements

(instead of four) are required.

Both problems use the same initial assumptions: *assume-known and *reduce-groul , a'i

empty, and *assume-unknown has only node Y. In problem LE2, node YZ's value can ho,

determined (x-c).

No REMOVE transforms match. Commutation of addition is perorrn,d ty a

SUMMARIZE transform. For this, 6 matches and expansions occur, one for each devic.,

Trying to commute these commuted devices results in duplicating devices already in th.

network. The system detects this and merges the duplicated devices.

I.
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The rpil action hepi, whwn partival- matches for REDUCE transforms are I 'i ''. i

The sy ;te'm find,; 1'' matchpq fbr the five associativity transforms in the system's 1ih61.11 y

examftli.i are

A: Funny as-,,1 q *z. !, y.s- r .' xr s) (e) (q))

B. Funny-asst-, q *z. r ~, .. ' xy ((r s) (e) (q))
Funny issorc q xvK. r -. S-'-v e->'/L OrI S) (e) (q))

C- Funny-Assrst q t 1- >x, h -~ ( s) (q) (e))

Of coir,;P wheow'Pi I iinri -iS c atches. -assoc will also.

In prohl-ro F ,) typ i, pplications are possible The first four mat~- 1r- -' i

meet t he r vpr i'. r I i (-.i s,, t !i e outline tiode th at could in tei spct * a si Ii n I ; I I

is Y (-Aliry in Himr 1m) 'ri, ciiciit (inputs to outputs of the enablpment) is inf!i 1r I

diagram rri"hr"", I innvr ajrr n rd glohal1ly contains X, XY, Z, and Y7 Whirl (it i-

four tra nsfni m, (or t I , r *i ssrn onter p a its) is actu ally used depends on "t he luc k (--f i h, d i

(actually it i~s dpton'nin nv.ric, Lt''f follow two different solution paths: LEMA aFpplips

'A Funny asso q->z. r->y, s->c, e->x

adding X and / i.rdrr ind LcEA applies

13 Funny-assor q-,Vz, r- ,c, s->y, e->xy

adding XV and V/ :c rtsuciu

In pirnlhom I F' (ronit-ri.,er X is known in this example), the last march (C) o- the Ir

does meet the typ'- h criteria with enablement ((R SXOQ))
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outline: X, B, input: Z; output: Y.

By the way, this fails type-A criteria number I. Another enablement for this transform 11.C%

nodes Z. Y for the outline, and type-a criteria number 2 fails. The reason Y rather than Z was

chosen as the output is that minimizes the number of additions to ,assume-unknown.

Continuing with the three solutions LE3A, LE3B, and LE2, now all the devices added

must be commuted -- two in each case. No REMOVE type transforms apply, so another rr,,nd

of matching REDUCE type transforms occurs. The number of new matches is as shown belw.

LE3A: 56; LE3B: 48; LE2: 56.

Why find more matches before using the ones already known? The system does nt

follow either a derpth-first or a breadth-first strategy. Rather, it collects all the transfoinlm

(partial matches, actually) it could apply, and then decides whic/i to apply.

In the LE3 problem, none of these new matches are used. In LE3A, the old

Funny-assoc match

Funny-assoc q->x, r->y, s->a, e->z

doesn't result in any additions to assumption lists under type-a criteria. Similarly, in LE3R the

match

Funny-assoc q->xy, r->a, s->y, e->yz

can be used without additions. Notice that "mixing" these would require additions to the

*reduce group. See diagram "Three Linear Equations LE3A for the situation after ths,

transforms have been applied.
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Diagram "LE2" shows how one of the newly matched transforms, the 4ASSO(

transform, matches and how later the DOUBLING transform is applied to finally solve tho

problem.

Another round of matching takes place. In both LE3A and LE3B, a REMOVE type

transform named NEG-ASSOC matches (see diagram "Three Linear Equations LE3A)

These have enablements that satisfy type-b requirements. Using this transform in LEIA cas,

one of GI. G2 to be added to *assume-known, and the other to *assume-unknown. Similarly for

LE3B. Notice that GI is a wishful-thinking addition (so is G2).

Another round of propagating REMOVE type transforms occurs in both LE3A and

LE3B. Again, matches are found, this time for the DOUBLE-SUM transform (diffelet

matches in LE3A and LE3B, of course). This transform is shown in diagram "Douhle-suni

The enablement is satisfied. When this transform is applied to LE3A and LE3B, the probl.'nt

is solved, and Y.(A.C)I-2.0.

The solution to LE2 was

Y - (X + B) + (X - C)] / 2.0

The code for this solution is actually slower than the code for LE3. A later section will sl,ow

how the solution can be improved.

Modification of the Selection AlgoritAm for Improving Code

In the preceeding sections the emphasis has been on initially finding a computation path from



PLUS 0.0

PLUS
12

transformation DOUBLE-SUM d

.0

Ay

type REMOVE, enablement: ((A C) NIL (Y))

DIAGRAM "DOUBLE-SUM"
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the input nodes to the output nodes. Much use has been made of the simple observation lat

any node whose value is unknown must depend on those nodes whose values are known. As a

very general strategy the system tried to reduce the number of unknown nodes.

If a computation path already exists from input to output, however, the distinction

between known and unknown nodes is no longer particularly useful. In its place, the system usos

an even more revealing source of information about computational dependence: the computallon

path already discovered.

The initialization procedure used for a network for which code has already bern written

includes

1. All nodes actually used are added to a list *nodes-definitely-used.

2. All cnmplex devices actually used either directly or in macro-devices are expand,.d.

3. Nodes used more than once in the computation path indicate the pre ,nce r-f a
circuit-like structure in the computation path. These nodes are added to
*assume-unknown, and also to *reduce-group.

4. The output is added to *assume-unknown.

5. The *assume-known list is initialized by the inputs minus the multiply-used ncles
(4 above) and minus the output.

6. Any macro-devices used have their input nodes added to *assume-known, and th'ir
output nodes added to *assume-unknown.

When this initialization has been completed, matching and propagation take place much as in

the initial-writing case. Instead of looking for a value in the desired output node, tie syt,.m

looks for an improvement in the time-cost. As mentioned before, the SPEEDUP transform tylt

-- i
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is used earlier on when improving code.

While propagating values is a network to be "improved," the system maintains a li,t

*IMPROVED-NODES. This list is used in the enablement criteria.

The tests to see whether a transform should be applied must be adapted. As befor,

two types of application, TYPE-A, and TYPE-B, are used. The restrictions and effects are

shown in table "Enablement tests for Improving Code."

Example: Solvinjg svstenis of linear equations continued

In an earlier section, a problem involving three linear equations was presented and !.nlved for

two cases. One (LE2) involved redundant information in the problem statement, and it

happened that the system found a less efficient solution in this case than for the LEI, Fonblem

When the system is asked to improve this inefficient code, the system determines that

node X is used more than once in finding the solution. The initial assumption lists are

*assume-known: A, B, C; *assume-unknown: X, Y;

,reduce-group: X.

The system starts with a list of all the old matches. Of this initial collection, several can hi.

applied without adding any nodes to the assumption lists, but these create only dujlicat.s of .

already existing devices.

The actual work begins when an old +ASSOC transform satisfying type-a criteri is

selected. This matcIes the problem network with
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D -> Z, C -> A, B - Y, A-> X.

The enablement is ((B CXAXD)).

In fact, this is the "same" transform as the Funny-assoc application that started the

LE3A problem variant. The type-a circuit is the same for improving the LE2 code as for

writing the LE3 code originally. The LE3B variant solution is not used because it would

require a larger number of additions to ,reduce-group.

The remainder of the "improvement" example follows exactly the LE3A solution shown

previously, except that in addition to the matches found in initially writing the code, 44 more

REDUCE type matches were found (and more of other types as well).

FINDING MATCHES

The mechanism that matches transformation rule patterns against the datum network (which is

the original problem network with new devices and nodes added) has three distinct parts: a

preprocessor, a partial match propagation routine, and routines for finding nodes for U-vartablo

and K-variables. When the matcher has finished, a psuedo-device can be created (as descriod

earlier). The mechanisms for expanding (or instantiating) psuedo-devices will be discussed in

the next section.

The preprocessor takes the network that constitutes the transform's pattern, and

produces a match sequence. The details of this preprocessor are not very interesting. The
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match sequence starts with the sped device, followed by node/device pairs such that theo riod- 14

already been matched -ind (lhe device has the node on one of its terminals. The Add- R1 ,

devices are the last de'vices on the match sequence.

The partial match propagation mechanism is also quite simple. First, rI*o sy'1-rn

compares a transformatinn rule's seed against a datum device. If they match. then III~ dovvi'

terminals are compired. It they are compatible (constants in pattern only match rrcort ii,

datum), a partial match is created and stored in the datum node corresponding to the fit st iivd

in the match seqiience'*
Partial matches are propagated from one node to another according to thw rnialc

sequence, subject In the iestriton that a datum device cannot be matched by more Ohat -t

device in any pattorn (thi is critical!) A datum device can of course be involved i rev rd

pattern mitrhes Fach piopagated partial match is stored in the appropriate "next" ri, -it in rti.

match sequence If propagation tails because a device of the proper type is not on th l. datMi

node, and that pattern-&evice has been flagged as being an add-break device, then a nrw d--vie.

is added to the datumn network, a round of value propagation takes place, in~d t'

partial-match prollaption containues. Propagation ends when the match sequence hA, t-I

exhausted.

The third and final part of the match mechanism finds nodes to match U-variatr .ini

K-variable specif icat ions The ilgorithms for finding matches in these two casos will I-,

described separately below -rhe semantics of these specifications were carefully engii.w'red '

ALA16..
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that for any match of the pattern network to the datum network, if the specification could ie

satisfied, only one datum node per variable-node needs to be considered. K
A lower bound on the system's time performance is provided by the matching

mechanism. For any particular transformation rule, the worst-case number of possible matches

is computed as follows. Suppose the pattern has M devices, and the datum network has N

devices. Then the seed device could match as many as N devices, and then the next device in

the sequence could match as many as (N-I) devices, etc. The number of possible matches,

assuming all devices in the pattern and in the datum are of the same type, is given by

N*(N-l)*(N-2),...(N-Ml)

This expression is strictly less than N M for M > I. Of course this worst case never occl rs

because firstly, the devices are (usually) of different types, and secondly because the terminals c4

a device are distinguished. The worst observed case was quadratic (an associativity pattern)

Finding nodes for K-variable stecifications

A K-variable specification is essentially a list of nodes (specified by transform terminal) to be

considered as "inputs" for the K-variable. The values of these nodes are currently unknown

(else the search for a K-variable node fails), but if they were known would allow some node (the

node one wants to find) whose value is currently known (and not a mode value) to be computed

from the "inputs."

The algorithm for finding these nodes (if they can be found) uses several rperations
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that are also used for finding macro devices (explained in the next section). These are

explained in table "Packaging Primitives."

To find a node to match a K-variable specification, the following procedure is used:

If any of the "inputs" are known, fail.
Push-value-structures.
Initialize K-variable "inputs."

LOOP
Propagate values. If a node receives a value and that node was previously

computable, then go to WIN.
Suggest external nodes.
If no nodes can be suggested, then fail (pop value structures and return).
Go to LOOP.

WIN
Pop value structures.
Return node that was previously computable.

A part of the algorithm above is testing to see that the external nodes found (if any) are

in fact free with respect to the computation path from the k-variable specification "inputs" to the

node eventually found (if the search was successful). Since no output can be specified for the

computation path, this test takes a very simple form (see discussion following).

Currently, if the search for a K-variable (or a U-variable) fails, it is never attempted

again. This may not really be correct.

How much time does this search take? Pushing and popping value structures takes no

more than time proportional to the number of nodes. Suggesting external nodes (to be discus'.ed

later) also takes time proportional to the number of nodes in the network (it involves analyzing

the entire network, and then using the results of this analysis in judging each node to see if it

can be suggested). The loop in the algorithm above cannot be executed more than the number

-. - . - . -- . .
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of nodes in the net, because at least one node must be suggested as external each tinip aiiid

(and no duplicate suggestions can occur). Therefore, the algorithm (in the worst case) t,~es imi-

proportional to the square of the number of nodes in the network, and by previous atngumc'"r'..

this is polynomial in the number of transforms applied.

Finding nodes for_ Ulariat*t Specifications

Unlike the algni ithm f--r finding K -variable nodes, value propagation cannot t- use'd inl

finding U-variahh' indes Recall a U-variable specification is written as:

(DEFINE-U -VARIABLE-NODE transform-name

(Il- asI.~~rn~~-rame(<input-terminaI>) (<output-term inab.>)))

The idea is that thpie is -I uomptton path from the input terminals (of the pattern nw''l1 I :

the output- term InalIs slielfied The inputs from the specification may be known, but I).. Nitjit'.

must not he? rurre'ntly k nown However, if all the inputs and the node matching tile S1'c(ifia l(Inn--

were known, then the outputs shoold be computable. The node found should not be an otiit-lit

node.

The problem with sarisfying this kind of specification is to avoid i-ximininno' ill

computation palh ftorn 1 11.111 to t.-put. because the number of such paths is (in the wi st (,I,-

exponential in thjr nuimbet of dovices. In all other situations where the system ni'r find

computation path, 7iny coripmuaturvn path will suffice. But here a special Computatioln lathfi il

required. it must inuvo~lve .u n-de currently uinknown as a so-called external node (i P. it flutist 11

free with respect tV the comrputatucu path specified).
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The algorithm makes use of a list .IN-EXT, initialized to contain the alko-knrwn

extension of the input nodes from the U-variable specification. If any output r,de is in

*IN-EXT, then the search fails.

The system then constructs a list of nodes it will "back-up": *NBKUP. Initially then

list contains the output nodes from the specification. The overall algorithm looks like:

Initiie iIN-EXT and *NBKUP.
If AIN-EXT and *NBKUP intersect, fail.

LOOP
Form new *NBKUP by backing up from old *NBKUP. This ste l , will .,

explained in detail below.
If backup step discovered a U-node, then return it.
If *NBKUP empty, then fail.
Go to LOOP.

The backup step is. for each node in *NBKUP, examine the devices attached to th,' ,,+",

ignoring devices that have already been "backed up through." Each device is then - x'nim,,

for a rule that compttes the node being backed up. Rules that compute a mode, and rules th.t

use macro-devices ai1 excluded. If such a rule can be found, a list of nodes is formed such that

I. The node is not in *IN-EXT.
2. The nnde is not known.
3. The node is not in the output node list.
4. The node is needed by the rule.

There are evidently three casts for the length of this list of nodes:

The list could be empty. This is actually impossible, because then the node being bacl.,'
up could not have been in *NBKUP.

The list contains one nde, and all the outputs are in that nodes also-known ,xteni.-,n
(including *IN-EXT as known) This is the U-variable node. Return it.

I.[
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Otherwise Pick one of the nodes in the list (at random) and add it to the new *NBKI.JP

If any of the nodes are already in *NBKUP, then none need to be added.

This completes the description of the backup step F
That the node found by this procedure satisfies the specification is evident by testing to,

see that the outputs are in the also-known extension. Although in the worst case the list

*NBKUP can grow exponentially with the number of times around the loop, no duph:it'

entries are permitted, so the length of *NBKUP is bounded by the number of nodes in tr,,

network. Similarly the number of times around the loop is bounded by the number rf devir.

in the network, so the overall time cost is proportional to the number of devices times thr'

number of nodes, and therefore polynomial in the number of transformation rules appli,'d

APPLYING TRANSFORMATION RULES

The result of applying a transformation rule is to add a number of devices to the datum (,i

"problem") network. The number of devices added is equal to the number of devi(es in thr,

instantiation network plus the number.of macro-device instantiation specifications.

In addition to creating and adding copies of the instantiation network devices and

nodes, the critical steps (if applying a transformation rule are applying "Free with r.sipect ,,"

tests and finding macro-devices. These two steps are closely related. In fact, testing for nrod,-,

being free with respect to a computation path is part of the process of finding a macro-device

The principle problem in finding and packaging macro-devices centers on the so-called

. .-I
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"external nodes." For example, in solving the square-root problem the system found a mamn

device F (see diagram "External node in square root). This device was specified as comrIutlng

a node OUT from a node IN. The macro-device found included a third terminal that wa.

connected to the node SO, and is an "external node." The following sections describe how the,.

macro-devices, and in particular these external nodes are found.

Finding Macyo Devices

A macro-device i% specified by telecting a set of nodes as inputs, and another set as outlputs It

may be that some outputs are also inputs. These "identity function" outputs are handl']

specially by the system.

Another class of outputs the system handles specially are those that are known and f r

with respect to the specified inputs. This situation arises in the diagram "Alternative Recut iv,,

Factorial" in finding the macro-device for START. The node on RECRI's SUP teniinal v a

constant 1.0, and is free with respect to the node on terminal BTM (compare this with th-,

diagram "single-rec-application"). In this case, the macro-device for START encodes a const i t

function for SUP.

In the discussion below, it is convenient to ignore this special case of "constant fnctirr."

as well as the special case of "identity functions." That is to say, in the following, outpuits art, not

also inputs, and do depend on the inputs for their values.

The process of finding a macro-device closely resembles that of finding a K-variahl,

- ,
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The alp*irithm, outlined below, uses primitives in the table "Packaging Primitives".

Finding a Macro Device
Push value structures.
Initialize input nodes.

[('Op
Propagate value structures.
If all output nodes have values, go to WIN.
Suggest external nodes. If no nodes can be suggested, the macro device be

found at this time. Pop value structures. Fail.
Suggestions are recorded as possibly-external.
Go to L.OOP.

WIN
Find nodes used in computing output nodes. These nodes are to be divided into two

classes: internal and external.
The list of external nodes is initialized to contain the inputs and outputs.
Divide nodes used. This step is described in detail below.
Create a complex device with a terminal for each external node.
Create a defining network by copying all nodes used and all devices with all

terminals attached to nodes used.
Write device rules for new complex device by encoding functions for the defirting

network.
Pop value structures.
Return complex device.

The step that divides the nodes used requires further explanation. If a node is neither external

nor possibly-external (i.e., neither an input nor an output nor suggested as an external), then it i;

an Internal node. Each possibly-external node in the list of nodes used is further examined by

seeing if it could be comptted using other possibly-external nodes (possibly not in the list of

nodes used). If it can, then it is made internal, and the possibly-external node(s) us.d in

computing it are added to the list of nodes used.

This complex post-analysis is required because the precise computation path cannot be
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known when externals are suggested, and so it can happen that mutually computable external

nodes are suggested. The post-analysis resolves this uncertainty.

Suggesting Externals

In order to be suggested as an external node, either for the purpose of finding a macro d.'vice

or for finding a K-variable node, the node in question must both be previously c€.mputahle

(easily decided by using the set of pushed value structures), and be free with respect to tho-

computation pat6i from inputs to outputs.

The process for suggesting externals involves examining each device in the network,

and each rule in a device. The system Is looking for a (non-special case) device rule whose nd,

computed does not have a value, and whose list of needed nodes contains only nodes that ar'

either known or both previously-computable and free with respect to the input-output

computation path. If such a rule can be found, all nodes in the second catagory are su!, .ested as

externals.

The notion of "Free With Respect To"

Three processes involve testing to see if a node is free with respect to a specified computation

path from input nodes to output nodes: finding K-variable nodes, finding macro-devices, and

satisfying FREE-WRT specifications associated with transformation rules. Since the way the

system represents iteration and recursion dependins on finding macro-devices, this algorithm ,is



I1. Coherent Behavior 155 Applying Transformation Rules

critical to the operation of the entire system.

To simplify the following exposition, the term "free" will be used as a shorthand for

"free with respect to the computation path from the specified inputs to the specified outputs (if

any)".

The notion of a node being "free" has not been defined well enough to allow a pic-of

that the system's test is correct. Consider the situation in diagram "Free Problems." The

diagram shows how a node Q2-1NODE shifts from being judged free (by the algorithm us.'d by

the system) or not free as the situation is slightly changed.

The notion of a node being "free" is similar to the notion of a quantity being a

parameter in a mathematical formula. A quantity can be a parameter if it can be held constant

as the input(s) of the formula are changed. Any node judged free has this property.

Problems arise when more than one computationally related quantity could be thought

of as the parameter. In these cases, the system prefers to consider the node furthest from th,-

output as the independent parameter. In most cases this agrees with intuition, but the "right"

answer to these problems is sometimes not at all obvious.

The question should not be "is the free test correct?" so much as "does the system do

Jhe 'right' thing in situations where the free test is used?" In seeing if FREE-WRT

specifications are satisfied, if the node is free, then it is both used to compute the output and not

computable using only the inputs (even assuming i-device circuits can always be eliminated And

allowing use of constants).

-od
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In finding K-variables the free test is crippled by not having an output specified. In

this circumstance the test amounts to judging nodes computable from the input assuming

i-device circuits can be removed as not free, and the rest as being free. Considering the nature

of finding K-variables, thiF is appropriate.

In finding macro-devices, the question of which independent parameter depends on

which is solved after a value for the output is found.

In conclusion, using the free test below lets the system do the "right" thing in all cases.

"Free withi resict to" Testing

* The algorithm below tries to determine if a node QNODE (for the node in question) is free.

The algorithm may make an error and claim that Q NODE is not free, even though it is. Tip

idea is to see if ONODE could possibly be computed on the basis of the input nodes and other

nodes "further" from the output nodes than ONODE.

The first step in the free test is to order the nodes in the network according to their

distance from the output nodes (if any). The ordering is easy to obtain. The outputs are given

distance - I. Then for each node N newly assigned a distance D the devices connected to it are

examined. If any of these devices has a rule computing this node N, then the nodes needed by

this rule that have not already been assigned a distance, and are not in the also-known extension

of the input nodes are now assigned a distance D4. This process is repeated until no more nodes

can be assigned distances. The distances thus assigned are the minimal number of devics a

_I,
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computation could pass through.

To determine if QNODE is free, its distance is determined using the distances

computed above. If there were output nodes specified, then the O.NODE must li,;ve h-,n

assigned a distance (els,- fail). A list of "addable" nodes is formed containing throse n-les

strictly further away than OQNODE from the outputs (the list is empty if no outputs we're

specified). A property of this list is that any constants that might be combined with th, inp t t,

give ONODE a value will be in the addable list.

A list of nodes currently having values is formed; call it NLST. (in the case of

checking FREE-WRT specs, NLST is initialized to the nodes specified as inputs instead of

nodes having values). Naturally this list cannot contain QNODE (if ONODF can h,

determined on the basis of inputs, fail). The free test works by adding new nodes t,, NLST.

and seeing if 0NODE ever gets added. If it does, then the test returns "no, QNOPE is not

free." If no more nodes can be added to NLST (whose elements are those nodes ften tb//v

computable), then QNODE must be free, so the test succeeds.

Nodes are added to NLST by finding device rules meeting certain requirements If

these can be met, then the node determined by the rule is added to NLST. These rstrica.,ns

should be considered a relaation of the normal interpretation of the relation of neederl-nodr tn

node determined by a rule. Even if a needed is not known, if it is further from the olo.,ut thaa

the node-determined (and QNODE) it will be considered "known," since it has the r,,,rentfl f

being known and having the output depend on it. Furthermore, if there is a I-device I.,nf,

I.
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circuit, as evidenced by some of the terminals needed being connected to the terminal computd,

then the system is willing to assume that the circuit can be eliminated. [I
A slightly different set of conditions is used for complex devices because the rules for a

complex device generally do not reflect the entire "computational dependency" story.

These reqmirements are:

FOR SIMPLE DEVICES
I. Node computed is not already in NLST.
2. Rule does not return a mode.
3. Each node-needed is either in NLST or in the addable list, or equal to the

node-determined.
4. Rule does not use any macro-devices (this should probably be moderated').
5. If node determined is addable, then it must have a smaller distance than any of

the nodes needed.

FOR COMPLEX DEVICES
I. Form set of nodes attached to complex device terminals not marked as being

either constant-terminals or mode-terminals.
2. If ONODE and a member of NLST are in this set, then QNODE i% not Ire*.

Test fails.
3. If all nodes in this set are in NLST or addable except one, then add that one tri

NLST.
4. If all nodes in the set are either in NLST or addable, then select the node clo.est

to the output (using distances previously computable) and add it to NLST.

This completes the description of the free test.

Concluding Remarks

All the basic algorithms have now been described. The next (and last) chapter will "walk

through" an example that exercises much of the system's capabilities. Hopefully this will put



111. Coherent Behavior 160 Summary

everything into perspective.

Many of the activities of the system have not been described. For example, detailcd

explanations have not been given for how device rules are interpreted, how doublets are

detected, how nod,,s and devices are merged, and how time-costs are summarized so thy can ho,

compared.

Other back streams and side waters of the system will be mentioned in passing during

the next chapter. These include topics like how time-costs are propagated thr:.Jgh

macro-devices and how code is generated.

Similarly, many of the procedures that Aave been described would be horiibly time

consuming if implemented as described. The system uses many interlocks, tables of previrlus

results, update lists, etc. to actually end up doing as little as possible.

No apology is offered for these sins of ommission and commission; this document is not

an implementation manual but the presentation or a theory of problem solving. I-ri.,fully th,'

reader can imagine solutions to all of the problems mentioned above. Some, no doubt, would b"

superior to the ones actually used.
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TABLE "TRANSFORM TYPES"

REMOVE -- removes a circuit, or more generally creates a new computation path from input to
output when the pattern doesn't contain such a computation path. The inputs and
outputs refer to the newly created computation path.

SUMMARIZE -- this is a transform that doesn't result in any new nodes. Commutation is a
good example of this type.

REDUCE -- reduces the size of a circuit by extablishing a new computation path crntaining
fewer devices. If the new path uses a macro-device, the "count" should irclud& th,"
devices packaged into this macro-device.

RANGE -- This is like a REMOVE transform except that only a computation path involving
weak device rules is established between inputs and outputs. MULT-SIGN (used in
the square-root example) is a good example of this type.

RESTATE -- None of the above. SINGLE-REC-GEN is an example of this (it doesn't result
in a qualitative speedup).

SPEEDUP -- This is only used for improving code. No new computation paths are creat,'d.
except those between nodes already having a computation path. The time-cist of the
path from input to output is (qualitatively) reduced.

For writing code, partial matches (except from SPEEDUP transforms) are propagated

according to the order above. In general, the types propagated are those down to and including

the type responsible for the most recent successful rule application.

, .
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TABLE "Enablement Tests for Writing Code"

FOR TYPE-A
I Outline nodes could intersect *assume-unknown set. One node in outline is neither

known nor in *assume-known. If no outline, TYPE-A fails.
2. One outline is actually known. (dropped if only one outline node is specified)
3. The outputs are unknown and not in *assume-known. This restriction mak,:s , th.it

the assumptions ahc.ut the state of the deduction are consistent.
4. All inputs arid outputs are in fact unknown. This guarantees that the compui.wtion pith

could be part of a legitamate circuit.
5. No duplications in outline. This was discussed above.
6. If *reduce group is non-empty, then computation path (inputs and outputs) iniei-ctr,

*reduce-gioup. This focuses the attention of the system on one circuit at a tim' fi
TYPE-A purposes.

RESPONSE:
Outline not in *assume-known and not actually known added to *assume-unknown. This

couples with restriction I above.
Inputs and outputs added to ,reduce-group. This couples with restriction 6 above.

FOR TYPE-B
I. All outline nodes are known or *assume-known. Compare this to TYPE-A resti iction I.
2. If any outline is in *assume-known, then no inputs or outputs can be in *assune-knrwn.

This combines with a side effect below to keep the system from getting distracted by
non-productive rule applications.

3. No duplications in outline.
4. All outputs are in fact unknown. This is meant to suggest that the output could lead to

computing the desired output of the problem statement.
RESPONSE
Inputs added to *assume-known. This couples with restriction 2 to prevent non-!,ioduciiv,"

rule applications at the same "site" on a circuit. This contrasts with TYPE-A, wl er,"
multiple applications at the same site are encouraged (A6).

Outputs added to *assume-unknown.

..................
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TABLE "Enablement tests for IMPROVING code"

FOR TYPE-A
I. One outline in ,asume-known (dropped if only one outline).
2. One outline either not in *assume-known but in nodes-definitely-used, or in *assume-unknown.
3. Output not in nodes-definitely-used.
4. If *reduce-group non-empty, either one of the inputs or outputs is in *reduce-group. or none of

the inputs are in nodes-definitely-used.
5. Outline must be non-empty, and no duplicate nodes in it.

RESPONSE:
Inputs and outputs added to ,reduce-group.
Outline not already in *assume-known added to *assume-unknown.

FOR TYPE-B

1. All outline in nodes-definitely-used or *assume-known.
2. Inputs known or in *assume-known, but not in *assume-unknown.
3. No outline depends on output (or output unknown).
4. Any output not in ,assume-unknown but in nodes-definitely-used should depend An inputs

This says that a type-b application should shrink previously used paths.
5. Either outline empty, or does NOT intersect *assume-unknown.
6. The inputs intersect either nodes-definitely-used or *improved-nodes.

RESPONSE:
Output added to *assume-unknown Input added to ,assume-known
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TABLE "PACKAGING PRIMITIVES"

Pushing-value-structures -- at any particular time, nodes in the datum network have vAlu"
structures. These can be pushed onto an auxiliary list, to be later popped. The
node's value structures are replaced with "empty". Note- it turns out that this is
never done recursively.

Initialize-a-node -- this sets up a new variable name, and gives the node that variable nam" for
a value. All other facets are similarly initialized.

Previously-computable-node? -- a node can be looked up in the list created by
push-value-structures to determine if its value was known when value structures won'!
pushed. If its value was known, then this test succeeds.

Suggest-external-nodes.-- This suggests "extra" nodes whose values used to be computable and
are guaranteed to be free with respect to the computation paths from the inputs to the
outputs (if applicable). Nodes suggested are initialized (see above).

Pop-value-structures -- restores state of world to what it was before pushing.
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CHAPTER 4

WALK THROUGH and CONCLUSION

This chapter has two goals. The first goal is to put the various procedures and cap;,bilit,,s of

the system into perspective by following its operation while it solves the moderately difficult

problem of writing a "Bernoulli number generator." The second goal is to review and speculat.

about the theory of problem solving presented in the preceeding chapters.

The problem statement

The usual text-book definition of the nth Bernoulli number B(n) is the following claim about FH

the set of Bernoulli numbers:

Sum from n-0 to inf.[B(n)/(n)]tn . t/(e t - !)

Just to make the problem solution a little shorter, the code-writing problem given to the systm

will be stated in terms of a power series with the nth coefficient equal to B(n)/(n!). It would b.

easy to write a transformation rule to make this restatement. Diagram "Bernoulli Problni

Statement" shows the original problem network.

On the face of it, the problem statement is asking for the "insides" of a DO-loop to b.,

written, based on the overall result of the DO-loop. The "" in the definition is universally

quantified, but isn't really a parameter: the quantification would be "for all n, exists 11(n), for all

t" rather than the usual function definition "for all n,t exists B(n)" (where B(n) is a variable, not
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a Skolem function). The reader is cautioned agonst being concerned with quantificativn in

what follows.

Outline of tAt solution

The solution to the Bernoulli number generator problem involves applying three transformation

rules in the sequence shown:

I. Expand the form et-I to a term-wise power series. The transform is naned
EXP-I-EXPAND.
2. Note that "t" is the result of a multiplication of two power series. A r,:w power

series is formed for this product. The transform is named TPS-MULT-U. I
3. Note that if a power series has the property that for all x [P(x),x]. then all

coefficients are zero except for the coefficient a, (. 1.0) of x.

Then a device rule for summation uses the fact that if the result of summing from CO to N is

known for each N. then each term of the summation can be determined.

The summation device used in this problem is closely related to the SIGMA device

shown in the diagram "Sigma Device." This device shows the power inherent in the technivq'o.

developed within these pages for dynamically configuring looping control structures.

In device SIGMA the decision as to whether the computation from N to SUM is

"inside" or "outside" the loop is left until relatively late in the problem-solving effort. Wile

there are other ways to make DO-loops "work" in an EL-like constraint language. no others as

yet developed have the capability of defining a device like SIGMA.

The solution to the problem of efficiently implementing the course-of-values recursive

function for computing F (in diagram "Sigma Device") will be examined in detail liter, when



DIAGRAM ".';IGMA DEVICE"

Two rule:,: Given "c" and "N", compute "SUM"

N

SUM = F(m) -G(N)

mc I.:
Given "F-in" and "C", compute "F-out" using an equivalent algorithm to
the recursive "F":

F(c) = G(c)

F(N+1) =G(N+l) -F(m) :
(this only uses F(c),...,F(n) to compute F(nA-l))
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the solution of the Bernoulli number problem needs it. A mathematical treatment of this

solution was given in chapter I.

Stating the Problem

The Bernoulli problem is hard to state, and therefore provides a good context in which

to compare and contrast this system's approach with the systems built by Burstall and

Darlington [Bul7], Barstow (Ba77], and Manna and Waldinge" [M79].

Burstall and Darlington's transformatiod system takes first-order recursion equation, as

specifications. The Bernoulli problem statement certainly isn't one of these.

Barstow's system takes as its specification the results of McCune's [Mc77] program

model builder. These specifications are actually very high level language programs in that they

always can be interpreted (however inefficiently). How much effort would be required tn

convert the Bernoulli problem statement to this form? To start with, the problem would have, to

be solved, and tMen a high level program would need to be constructed. That is, enformation

gathered while solving the problem may need to be thrown away in order to use Barstow's

system.

Manna and Waldinger's system uses a specification technique potentially more powelfIii

than the technique used here, since they can specify side effects. They can "non-constructively"

specify a function like GCD:

LI.
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GCD(x y) <. COMPUTE max{z:zlx and zly)
where x and y are positive integers

This specification cannot be interpreted as it stands, because without using some other facts

there is no obvious kipper bound on the values for "z" that must be examined. The braces V. 1

are set-constructors, and on the face of it the set above is infinite.

Incidentally, this system could state the GCD problem slightly differently:

X positive., Y positive, XIGCD, YIGCD, XINE, VINE
NE > GCD. and NE has the value (*NOT-EXIST input-spec)

That NE has a value constrains the GCD to be the largest number meeting the other

constraints because iny value NE larger than GCD also meeting those constraints is 1,nown nc.t

to exist. Naturally, something like a set-constructor could also be created.

The situation with the Bernoulli problem is that the output of the Bernoulli function is

specified in terms of the behavior of the entire function, not just by the relation of the otutput to

the input. This distinction is similar to the distinction between first and second-order piredic t,'

calculus.

In conclusion, none of the three systems discussed can even state the Bernoulli number

problem, and only Manna and Waldinger's system has the potential for a "slight extension" that

will let it express the problem.

Converence and Primitiv Recursion

In order to express the Bernoulli number problem and the concepts required for its solution, thr
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system must come to grips with notions like the convergence of power series. Burstall [11691.

Floyd [F671 Manna and Waldinger [M78], [M791 and others suggest using well-founded sets to

prove termination. Even if one can convert a question of a power series converging into a

question of a program terminating, finding a well-founded ordering of the real numbers so that

a proof can be constructed is as hard as proving convergence in the first place.

The following explains one way to approach the problem of convergence within the

"network of constraints" formalism.

The TPS (term-wise power series, see table "TPS Device") device has a rule for

computing the value on its PSX terminal using terminals START and X, and uses a macro

device from terminal N to terminal FN (called G in diagram "Bernoulli problem statement").

A power series could also be defined by giving a way to compute the "next" coefficient (such an

"incremented-term-wise power series" device has not been implemented).

In order to determine time-costs, and in order to guarantee that the programs written by

the system terminate, it is necessary to specify an upper bound to the number of times the bdy

of a loop will be executed, or the maximal depth of a recursion. This means that any

computation path contained in a network is expressed In a primitive recursive form. There are

functions, like the well-known Ackermann's fun.ion and the LISP interpreter, that are not

expressable in a primitive recursion form.

This limitation isn't as serious as it seems. Most practical non-primitive recursive

functions look something like
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(DO-FOREVER (SETOX (READ)) (P X))

where P is primitive recursive. Language interpreters are not primitive recursive because they

must interpret programs that are themselves not primitive recursive.

Another apparent problem concerns the fact that primitive recursive functions written in

a primitive recursive language are (in general) much longer than they would be if written in a

general recursive language (like LISP). But this isn't really applicable to the synthesis syrtm

because the language it writes code in is general recursive.

The real difficulty in only working with primitive recursive procedures becomes

apparent when trying to write a device rule for TPS. Some power series are uniformly

convergent (within the region of interest):

Sm(X) - (the usual partial sum) -Sum from n-0 to m: anxn

S(x) - a0 + alx + a2 x2  ... + anxn * ...
If for any E. there is an. M such that

IS(x) - SM(x)l < E

then S(x) is uniformly convergent.

Even knowing that the power series described by the TPS device is uniformly co-nveigent

doesn't tell how fast the series converges.

The decision was made to avoid the convergence problem by Piat: the device rul,

claims that the number of terms required is bounded by the square of the number rf bits (,f

accuracy required (compare to Newton's method where the upper bound of the number of t,- ms

Is the log of the number of bits of accuracy, when it converges). Before meeting this derisron

with too loud a cry of outrage, consider two points. First, In the Bernoulli problem statement it
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bendiscovered ye'Scnteeintanything wrn ihuigaspecial consti 'ictirin in)

cass werea serr ji known to converge as fast or faster than a certain rate

Clowely relitpd to the rate of convergence is the problem of how the series ('n vel i'

In the simplest case, one would like the remaining error to be no more than the last cot t-cti'n.

ISWx SMl(x)I < NOs) - Smil(x)l

(By the wiy, this condition alone (toes not guarantee convergence) If this is till, Owe-n Ow*

general recursive fnrm of the approximation function for S can examine the size of 'a. Iti 11 i

tell if the desired accuracy has been obtained. Unfortunately, this turns out not to It- truv 1,i

the Bernoulli nurnri es W(:td-nimber) is zero except for B(l)=-1/2.

The s.lt'ii. to this ptoblem selected for the TPS device is to refuse to 'bo'hi'vp" 111.it

the significance of vach new term is falling off faster than an exponential decay. Again this r,

reasonable. but not uiniver'ally applicable assumption (if a term's significance fallr. riff v'.z

much slower, then i stting of 00 torms would cause the system to stop summing Irflis ear1 !r

than it should have). The TPS device rule is shown in table 'TPS Device".

The problems of tate of ronveigence and manner of convergence arf plt"tn

unavoidable and iiniolvible in trying to write a general purpose power series evaluatv':. tra'

This illustrates why an att-maric program synthesis system is needed. That the sysr-m h. ow

described can handle problems of convergense (at least in some situations) has alt.' idy I on

demonstrated in the Newton's method solution to the square-root problem.
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Finding a~n Algorithm

The systerm breaks the code synthesis task into two distinct phases. fjnii, n r

algorithm, and implementing the. algorithm. The first phase sometimes involves a I"t (A

deduction. The second phase involves little more than propagating CODE-EXPression facot

Inialqizzitonof thf~ Deductiv'e Process

The problem statirnent is given to the system by first defining the problem netwoik M~PH(. C

in the diagramn *B,'rnoul1li poi~hem statement")and then asking the system to encod.' -iImii

computation path from the netwnrk terminal N (corresponding to the internal node'( rI.' iti-

name) to the terminal BN The system is further instructed to call this ftii1

"BERNOU LLI"

(define-networkc bsper (n tin)

((tps (*constant 0.0) psprod psx n fn) deftps)
(factorial n factn)

((*c factn fn bn) oprod)

((*c neti psx psprod) dtpsprod)

(Pxp psprod net)

(4C netl (*constant 1.0) not))

(encode-network 'hspec 'bernoulli '(n) 'bn)

After the function ENCODE-NETWORK has completed its effort, in addition to a it-w ITAI

function BERNOULLI having b-een written, there will be a new complex devie, of tyl".

BSPEC w ith two terminals N and BN available for use in other networks.

After removing value' structures (except values noted as being inputs like the cronst~irts.
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0.0 and 1-0), the input node N is given a value

(*VARIABLE N).

The normal assumption list initialization gives

*ASSUME-KNOWN empty
*ASSUME-UNKNOWN BN
*REDUCE-GROUP empty

Value propagation takes place, and only the node FACTN can be given a value Altho'1,h

chapter 2 showed how the factorial function could be synthesized and a complex devir' cremod.

here factorial is tre-ted as a primitive.

Value pro-pagation is a twn step operation (repeated until no more prnpagat.r- (ar t

accomplished), tho first (ropagatng LROUND, ERROR-BOUND, and UBOU NF) fa.-

independently, and the second propaigating TIME-COST, NODE-USED, and NVAI.UE in

that order If a TIME-COST facet is propagated, then the resulting rule-closure is us'-d I(-

propagate NODI>IJSVDtint. the same node. If that succeeds, then NYALUE is po~pagat- d,

again using the s-tm"v rule-closture. In what follows, the LBOUND, ERROR ROUN!). .init

UBOUND facets are never important.

The TPS device his a macro-device specification going from (nodes) N to FN, and N

is known whilte FN is ijnknown. This configuration satisfies the conditions for thf, outw~l 1

macro-device assumption exte'nsion rile (in chapter 3, repeated here):

O1twaord A1cc-c'cssumnption Extension.: If any of a rule's macro-o-'vmrr. inti-t
niodes am.' I novirt, then add the rule's needed nodes to *assume-known. F-tifwr-i ilmrnI
if the" macro -device's output node(s) are unknown, add the rule's '-titimt to
*assums'-iinknowri.
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The node PSPROD (on the "X" terminal of the TPS device) is added to *assume-krown. '10

the node PSX is added to *assume-unknown.

Matching (First Rounds)

Since no more value propagation can take place, partial matches are started for REMV')V].

type transforms. None of these partial matches can succeed at this point. SUMMAPIZE ty[F,.

transforms are triod next. Three partial matches are completed, and psuedo-devices a' r,,d

These transfnrms are all for performing commutations: two for multiplicatin; and -.

for addition. There aie, of course, other ways to tell a system (but not this systs.m) ah.,-t

commutative rules. The disIldvantages of the approach used here are that the datumi notv,,t,

(the "data base") grows. causing the number of partial matches to increas' A .tl,l

disadvantage is that simply adding these commuted devices takes a while. The advmitage .

simpler, more uniform representation of knowledge.

The system performs a round of partial-match propagation for each psur,do-dpvi.-

expansion (transform application) that actually does something (either adding a non-du'licat?d

device or merging nodes). When trying to expand psuedo-devices, all unexpanded d,vces 1i'.

examined In what follows, this subtlety wiii normally be glossed over.

Again, no REDUCE matches are found, but some SUMMARIZE transfornmu succ -ri

These are transfnrms trying to commute the commuted devices. As soon as each of th'.'

twice-commuted devices is added to the datum network, duplicate devices are det-,,ted anud
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merged. Part of the merging process involves combining lists of partial matches alrr ify ii wdr

This means 'chat since one of the devices being merged (the original) has already had I

commutation transform started in it, the result of the merge will be immune to commi.tition

There is one more hurdle to go over before the system "gets down to husi' s. Tf-,

pattern formed by a plair of commuted devices matches two different associativity patt, ins, e~i

two different ways. Since there are three such commuted pairs, there are twelve P EDUCY

transforms potentially applicable The situation is shown in diagram "Why no Du1.iicates in

Outline." All enahlments for these situations fail (regardless of the state of the dlediliclion).

Usig tepqteLrsE'r±i r~fexpeneticatiof

A well-known 1powsei series texpansion for exponentiation is:

ex = I -x + )(212 + 4n

In the Bernoulli mimnher problem, there is a form ex - I with its own power series #111r01

derived from the ahove by ignoring the first term. This power series is encodl':d irlv a

transform EXP-l-EXPAND with enablement as shown (see diagram "ZYP--EXPANr)"):

(define -transform exp-l-expand (t et-1)

((exp t et)

(+r et-1 (*constant 1-0) et))

((tps (*constant 1.0) t et-I nods-n node-tn)
(factorial node-n n-fact)

(*c node-fr' n-fact (*constant 1..0))))

(derine-enablement exp-1 e'pand restate (nil (t) (st-i)))

The pattern of this tiansrm matches the problem network, the enablement fails TYPE-A (r



DIAGRAM "WHY NO DUPLICATES IN OUTLINE"

+ASSOC 2 C

A D

plus cpu

typical enablement:

x REDUCE ((C D) (B) (A))

x

plus D plus B

D AC

S

+ASSOC3 plus X

plus Z Plus

typical enablement: REDUCE ((S X) (Y) (Q))

PAIR OF COMMUTED DEVICES: (seed from above can match

either device in this~pattern)

plus

+ASSOC2 +ASSOC3
A=B S =X

C=D 
Q =Y

fails: duplicate outline fails : duplicate outline
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DIAGRAM "EXP-1-EXPAND"

1.0

PLUS
T EXP ET ET- I

10 TI FACTOR IAL

start x

TP S

ET-1

enablement: RESTATE (NIL (T) (ET-1))
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table "Enablement Tests for Writing Code" in chapter 3) but passes the TYPE-B, applicatirn

criteria. In addition to adding three devices to the datum network, node NETI is added to

*assume-unknown (by the way, NETI was flagged as a "wishful thinking" extension). No other

assumption extensions are made. Diagram "Bernoulli after EXP-l-EXPAND" shows the

important parts of the datum network after this transform has been applied.

What would happen if a transformation EXP-EXPAND (also a RESTATE type of

transform) for expanding the exponentiation device were present in addition to

EXP-I-EXPAND?

(define-transtorm EXP-EXPANO (t at)

((exp t e.t))

((tps (*constant 1.0) t at-1 node-n node-tn)

(factorial node-n n-fact)

(+c et-I (*constant 1.0) at)

(*c node-fn n-fact (*constant 1.0))))

The instantiated +c device from EXP-EXPAND could immediately be merged with the

problem device

(*c netl (*constant 1.0) net)

as a result of doublet processing. Unfortunately if both EXP-EXPAND and

EXP-I-EXPAND were applied, the two resulting TPS devices would not currently tie mer.ed

due to implementation inadequacies involving macro-device indexing.

Using (instead of the above)

(TPS (,constant 0.0) T ET NODE-N NODE-FN)

would be more painful because a later rule pattern (TPS-MULT-U) would no longer match
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until after a rule pulled the subtraction into the TPS "loop."

In the previous chapter a suggestion to measure "amount" of "wishful thinhl ng' was

briefly discussed. One reason to believe something like that would be handy is illusir.at.d lt':

EXP-l-EXPAND involves less wishful thinking to get form NETI to 11,1X tii

EXP-EXPAND would in getting from NET to PSX.

Another way to think about expanding the exponentiation device is that t lit F\ P

device couild he defined as d complex device with both rules (as it has now) arid i defiow

network. The issup iiivolv-':d in expanding user-defined complex devices hay" lirit ht

explored, but it would seem that these expansions should take place after marching R I "T AIF

transforms As mentioned in the previous chapter, any complex devices actulAlv ' t-1

writing code are expandedi as pairt of improving code

This same issuty also arises when considering the FACTORIAL devicp lit h~iptii

there was a demonstration showing how this function could be written fromi a s.f ir

This device couild also be written as a complex device (or system-defined drvi' I i

potentials of tising complex dlevice% have not been explored.

Multi lication 01 Poni SeS

After worrying abi-ut comuttation a while, the system again looks at the partial m ~iffl4 -f

REDUCE type i runsbois There' arr- two ways the pattern network of the 'I PS-NMI 'I I I

transform (see diagram "Trinsfoim Tps-MULT-U" and table "TPS-MULT-)") riii ni.ot 1,
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the datum network. The two resulting partial matches are both instantiated, creiting twoi

psuedo-devices. The psuedo-device from the partial match with the seed TPS device marching.

the original TPS device fails the IJ-variable specification because the constant 10I is nor'

unknown.

If the TPS-MULT-U seed device matches with the datum TPS cr-zIted by

£XP-I-EXPAND, then the U-var.. le search succeeds with UFY - - BN. The enahloment fir

this transform meets the TYPE-B1 criteria, so expansion of the psuedo-device takes pilace A

new complex device type is created for computing (i/x!). A device of this new type is add-'d t-)

the datum network according to the transform's macro-device specification along with coplo's (if

the devices in thp transforms instantiation network.

-The assumptions are not modified as a result of applying this transform.

Although the TPS-MULT-U transform looks like a handy transform for nitltiplyinv

power series together, using it this way is made difficult by the presence of the U-vainddi

specification. In order to write a power series multiplication rule (call it TPS-MUI.T), about a1ll

that would be needed is to drop the U-variable specification and change the SIGMA2 deva-

(defined below) to the SIGMA device discussed earlier. Unfortunately, it turns out (liar tr

suggested rule TPS-MULT does not lead to a solution of the Bernoulli number pr-ohei

The S1GM 42 device is defined as shown in table "SlGMA2". Note thi, us" (if

embedded *DO constructions and the multi-directional macro-device specification. Thi: d.'vici'

is a close relative to the SIGMA device discussed earlier. It is used here because the twimiz
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being summeud del-end not only on the summation index (in MY, terminal DEF-X) bw t ri.

value of K (or L) on terminal TO. The explicit claim about SIGMA2 is that the valu.' r

terminal INTERM depends only on the value on the DEF-X terminal, and not on t'~rrnin.il

TO.

The SIGMA2 rule for computing INTERM uses data structures Discussi-n of ti

topic will be pnstproned

1 !tq!R !he PI~r~

Only one more ti -nsform application is required to obtain a solution network for Iw lit, R- ill!

number problem. Thp rPs -CONST ANT-COLLAPSE. of type R EMIOVE, 1 h- 1;i.n t 1I .

"TPS-CONST ANT-COLL.APSE" To see how the pattern configuration arnis7 n''rire tit it

when the TPS-MIJl'L transform was applied, MX > PSPROD, MPROD -> PfSPROIJ

a TPS device was created with its "input" and 'output" tied together.

The significant parts of the solution network, after ali I y ira n

TPS-CONSTANT -COLL APSE, are shown in diagram "Bernoulli Solution." Roe.niblt' tin

the solution network has many more devices than shown in this diagram.

As a result of applying this transform, *assume-known is extended to includ-' nodr I ,

and sassumne-unknown is exteci'ned to include node SUM. But it hardly matters, brr lus', tii

problem is solved by virtue of the rules in SIGMA: the rule claims to compute a valio' fr ii*'

node on terminal INTERM. and as shown in diagram "Bernoulli Solution," this irin11 1,



1.01

SUMS

T SIGMA2FACTORIALA

TIMES

MI TIMES

I TIME

The complete solution network has many 61.0 -

more devices than shown above.

-186-



IV. Walk Through and Conclusions 187 Finding an Algorithrr

connected to node RN; RN is the node for the solution.

DATA STRUCTURES AND CODE GENERATION

The SIGMA2 device has a pre-packaged solution to a typical data-structure design pirohl(.fl

speed up an implementation of a function defined by course-of-values recursion. There air

several possibilities including association-lists, stacks, and (used here) arrays.

How does SIGMA2's rule work? A variable P is initialized as an empty vrctir ([l1t

the synthesizer "thinks" P is a floating point number) containing some number of elemeris i h,

vector runs from the value on the terminal FROM (in this case 0.0) to the value on thr t.rril, l

DEF-X (in this case the input N) The first element in the vector is also assigned

Vectors (in this "toy" implementation) are manipulated by three functions-

(CREATE-VECTOR from to initial-value) -> vector
(STORE-VECTOR vector index value) -> vector

(ACCESS-VECTOR vector index) .> value (or error')

The deductive system only has two "types" of values: floating point nuubrs (-,t

unspecified precision) and mode values (currently only *TRUE and *FALSE, though :Al crfl, 1.

completely general). This type-less approach is inadequate for any domain except the -,,,wntlfillv

untyped domain of numerical programs investigated here. At the very least nn, ne,ds tr,

distinguish among integers, floating point numbers, character strings, and complex dra

structures. A possible way to represent this "type" information is as a separate facet in the vai,.
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structure. The proposed way to design data structures is an elaboration on thi5 idea

Both data-structures and control-structures are in a sense prepackaged in t1,- d'vir.

rules. Two methods of combining these prepackaged control-structures are usedl con -rtwn,iin

and packaging via macro-devices (and the associated multi-return facility to he ,

shortly). What would it mean to combine prepackaged data structures?

The accesqing pattern packagtd in SIGMA2 mighL be described as follows

I. Size of indexed structure known when it is created
2. Elements of structure are floating point numbers
3. Stores occur in sequence, starting at the bottom index.
4. Accesses ("fetches") occur in sequence, starting at the bottom and goin, 411 the X-: y

to the most recently stored.

A data structure with these pioperties can be implemented in various ways including ; I ISP Irt

(do a RPLACD at the end to add a new element), or an array A morp intiesting;- and , fti, v tt

implementation uss a block cf contiguous memory and two pointers. The first ipoitl v, It ,

"next fetch" pointer, and the second is the "next store" pointer. The beauty f thr. .."

implementation is that the only arithmetic operation needed for manipulating the limtr. t ,

"increment by I" (usually a very cheap machine instruction). General vectors and arriys d, no't

have this nice property Such a structure might be called a fil'.

How could a "data structure designer" be added to the synthesis syst,'m' A" ir

speculation, suppose descriptions similar to the one given above for the structnrF, used Iy

SIGMA2 could he propagated much like values are currently propagated. As this (1-.rlcl~tnl

was propagated through the network, and used in computing "cost", it could he mnoifjdiu Iy
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relaxing various restrictions (for example, the "fetches become non-sequential but Ailways In

increasing index). Perhaps at the end of the deductive process, after the output has itcepivPd i

value but before code-expressions are propagated, the data structure specifications could t,,

examined. There are probably only a few fundamentally distinct data structures, so it might h.

possible to do the design almost by table lookup.

This approach should be contrasted with Barstow's [Ba77) method of refining alnu,

(essentially) an "implements a kind of" hierarchy. Rosenschein and Katz [R771 dlscu,%; n, riw

similar to the propnsal here in a user-interactive context.

The view suggested here is that the synthesizer should worry about the infltienc,, (f

control-rtructure decisions on data-structure design, rather than data-structure dr.,rin, :,

control-structure design Several investigators have advocated concentrating on d ita ,vri

procedures. Hewitt [H791 shows how control structures can be viewed in terr, of it,#

interaction among datum Dennis [D75] discusses a similar view of computation it terns 0

data flow Liskov and Ziles [L75] discuss language design issues inherent in this "d ita fi r-i"

view.

I believe something along the lines sketched out above could be made to woik dl,'i,

the large number (if open problems involved. I also believe this is the most important dirrrt,",

in which to extend this research.

Generating Code

L .J
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At this point, node BN (the desired output) has received a value structure with expressions for

its TIME-COST (see table "Bernoulli Time-cost"), NODE-USED, and NVALUE (see IItlM,

"Bernoulli Nvalue") facets. Some peculiar things were done to obtain its time-cost; these will ie

discussed shortly. The system is now ready to write code. Of course, this is not the first time

the system has generated code while solving the problem: it wrote code for the MULT-F

macro-device when the TPS-MUL1 -U transform was applied, and it wrote three subroutinr.s

when finding macro-devices for the sigma2 device. The code for these functions (it isn't vry

pretty) is shown in table "Bernoulli other code." The resulting code for computing Fern(.1lh,

numbers is shown in table "Bernoulli code."

When code fragments are being propagated, the system knows how many timps , i,

node was used. If a node was used more than once, the first time its value is used, a SET( is

constructed and the code fragment in the node is modified to be the (gensym) variahle

SETQed. Unfortunately this problem has no examples of this.

SIGMA2 does not use a macro-device with more than one output specified. so the

multi-return facility was not employed. When this is used, the code written for the fiist of the

outputs includes SETQs to temporary gensymed variables for all of the other outputs. If the

macro-device is used and the first output is specified, then the nearest PROG variable list has

the temporary variable names added to it Code is also generated for all the other outputs

specified when the macro-device is created. However, before "plugging in" thse code

fragments. a check is made to see if the most recent use of the macro-device computing the first
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output involved the same input forms, and if so the preper temporary variable is uispl z nti,-i

The code that eventually emerges is correct but (according to some) ugly because it us-' 3

non-local variable

Lambda applications result from using macro-devices (in a round-about way) I

make the code look a little more attractive, a form involving a lambda application i. mnas.. ,I

by checking the arguments to the ' mbda. and noting any that are atomic (either a variahI,

name or a number). These atomic arguments (if any) are used to rewrite the lamthdl form t-

reduce the number of arguments taken by the lambda. One can see this by close insl,r'IrI #,I

the tables of code.

The above operation is an example of the kind of improvement found to -,e n.,, ,

accomplished on the resulting code than during the propagation process. Another imv,.wrlnl'i

performed as a post processing step is so-called "constant folding." If all of the ati:,, , nt I,- a

LISP function are numeric, then the function is evaluated and the form replaced by the t si t

COND forms are also improved by constant folding and dead-code elimination. Eari'st [F;i]

gives a good summary of code optimization (sic) techniques.

Another kind of improvement not performed involves repeated terminal referICeS III'

device rule. The code has several instances of the following:

(CONO ((- (RFACTORIAL gens$m) 0.0) (ERROR))

(T (QUOTIFNT 1 0 (RFACTORIAL gensym)))).

This cnde fragment results from the rule for the *C device:

(RULE-Or *C A (B C)

........................ .. • ...........- , 1
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(*CASES ((PRIM- B (*CONSTANT 0.0))

(*TRUE (*CASES ((PRIM- C ('CONSTANT 0.0))

(*TRUE (*ANOMALOUS Z-DiV-Z))

(*FALSE ('NOT-EXIST DIV-BY-ZERO)))))

(*FALSE (PRIM-DIV C B)))))

Notice that the device rule uses the terminal more than once. It would be easy enough to detoct

this situation and issue a SETQ or build a LAMBDA expression, but the curr'nt

implementation doesn't handle this in the best way.

Why does the test to see if the factorial of a number is equal to 0.0 occur? If thte W,,rP

a weak rule for the factorial device noting that the lower bound of the output is 1.0. then this t"!I

would have been eliminated. I

Packaging Code oLr a Complex Device

In order to be able to use complex devices for value propagation, a minimum of f.,,jt f ,,to,

must be handled: TIME-COST, NODE-USED, NVALUE, and CODE-EXP. Of th-s.

three are quite easy, given that the code for the defining network has been written and given a

name. The methods used are outlined below.

NODE-USED -- combine node-used expressions of the input terminals
NVALUE -- return a form applying the name of the function to the NVALUE

interpretations of the arguments.
CODE-EXP -- return a form applying the name of the function to the CODE-EXP

interpretations of the arguments. Actually, the lambda expression for thp functi,-n
definition is used, instead of the name so that the various improvement techniqije% can
be applied.

It would not have been too difficult to be able to package knowledge about bounds (L.P OUND

L - ., .... ,. .- -.. .., I.
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and UBOUND) but the current implementation does not have this capability.

Information relating the name of the LISP function written for a complex do vic,, th'

defining network, the device type, and how the various facets are to be propagatd is [it

together in a structure indexed by a atomic encoded function name (usually gpisyme,)

Encoded functions can be used, for example, in NVALUE-like expressions.

The Truth about TIAIE-COST Pro agation

Propagating TIME-COST through a complex device turns out to be difficult. Cowicleil th"f

macro-device formeri for MULT-F (see diagram "Bernoulli Solution"). The tim,' co,;r ,t

computing RFACTORIAL turns out (in this system) to be proportional to the %ii- r'f the inltt

But the size of the input is not known when the complex device is created.

Instead of a TIME-COST expression, a summary is recorded (along with ctlh-t

information) when an encoded function is defined for a network. This summary (type and 00.,

or two numeric parameters) gives the "order" of the time cost according to the fnllowm,

classification scheme ("Lg" is Knuth's suggested abbreviation for "Log base 2"):

CONSTANT A

POLY-LOG BxALg(x)

POLY BxA

POLY-EXP BxA2x

In the above, A and B are numeric parameters, and "x" is used to represent the most 'inificit

input terminal(s) For exarrpl, if the time cost depended on the product of two input t,,minh.,

then the summary would be like x2 . The system summarizes Lg(Lg(x)) as a constant, and i
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similar faux pas is used to close the summaries under each operation.

The system's treatment of complex devices with regards to TIME-COST analysis i.

similar to the style of analysis humans perform. In order to propagate a TIME-COST threerh

a complex device (or, equivalently, the "device" found for a macro-device specificitr,n), an

expression is built using the complex device's summary and the NVALUE of the "lirincl1,"

terminal" The principle terminal of , complex device found for a macro-device sperif Irati rn 1'

(arbitrarily) that terminal corresponding to the first argument of the specification

The summary algorithm is one of the two techniques used for comparing TIN F-COST

expressions. The other uses "typical values" for inputs and does a numeric comparison rof

evaluated expressions. These two analyses will not always agree!

Another peculiarity about TIME-COST propagation concerns cases when the,' l,,dy rf .i

loop (either iterative or recursive) has a time cost depending on the value of a loiop variahl.

This problem arises in the Bernoulli number example (see table "SIGMA2") There is no way

to produce an accurate time cost in these situations without possibly introducing iterativP

constructions into time-cost expressions. While there is no theoretical reason why this rould nc,-

be done, in practice these expressions would be extremely clumsy to deal with As a1,

engineering judgemental design choice (read "kludge") any *DO-VARIABLE frirm ir, a

time-cost expression is arbitrarily replaced by the expression for "maximum number of tinir.

the loop body will be executed." The final time-cost for the solution to the Bernoulli numter

problem (see diagram "Bernoulli Solution") is in table "Bernoulli Time Cost." The syst,'m

. .
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ditcovered that the code ran like N3. The final code is in table "Bernoulli Code." This code

has defects similar to those noted for the Newton's method SQRT code.

The classical algorithm for finding Bernoulli numbers is the N3 algorithm found by the

system. There are much better algorithms. The Bernoulli problem is an instance of a mor.e

general class of problems involving the reversion of formal power series: Given a power series

S(x) in terms of its coefficients, find the coefficients for another power series P(x) so that

S(P(x))-x. Brent and Kung [B78] show that using Newton's method yields an O(N 5 /')

algorithm, and also using Fast Fourier techniques gives an O((N Ig N) 3 /2) algorithm for solving

power series reversion problems.

CONCLUSION

This report has described a system for writing and improving code described by (essentially)

input/output specifications. Although the system has solved a variety of coding problems. it

should not be called an expert at this task in the domain of numerical programs. That was nrt

the goal of the research.

The goal was to explore a different way to build an automatic problem solving systrr,

The goal was to construct a system robust enough to solve several kinds of problems in a

complex domain, and still have the property that the solution effort was "coherent." This gr'al

has been obtained.

. -
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Coherent behavior was obtained from local, axiom-like rules by first restricting rl,

expressive power of these rules, and then making use of two consequences of this restriction.

The first consequence was that "backtracking*, "guessing', splitting the data base to hand,'

disjunctions, and other operations to accomplish the same task were made unnecessary becails

disjunctions were eliminated. For the same reason t-0.'ologies in the restricted rule language,

could be recognized in polynomial time. The second consequence was that the rules weie siTi'l,'

enough to automatically predict their elfect on the state of the solution effort.

By deriving an abstract characterization of the rule's effect on a problem n,.twork in

terms of its effect on circuits and computation paths, possible rule application sites could h.

ordered in terms of a selection criteria. The classification scheme, acceptence crit,'ria fr (fit rwn,

types of application, and the methods of modifying the problem state descriptions .'e t,,s

results of this research

Another basic result concerned a way to represent recursive and iterative conwtructi,n

within the network of constraints formalism. This method involved dynamically finding

portions of the problem network to "fill in blanks" in a pre-packaged schema involving ith

control structures and data structures. The advantages of this approach are two com!,l, \

time-cost projections can be easily encoded in the system's rules, and manipulation of things 14"

power series became surprisingly easy (the Bernoulli example in this chapter usd orly a f,'

short rules).

The system's computational mechanisms heavily use a propagation process in r,ner gm.,,
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or another. Propagation processes have the important property that they easil) lend tInlrsolvos

to a parallel-processor implementation (provided, as in this system, no "race conditir'ns" r.cw

because of backup) More traditional goallsubgoal deductive systems do not have this pr(,Iity

As VLSI technology makes multi-processor processors financially more attractive. 1hi'

consideration will become increasingly important.

Although primarily concerned with problem-solving in a particular donain, th,

deductive procedures, control mechanisms, and representational scheme should be adartihl' I-,

other domains'that share the following properties with the programming task:

I. The "answer" is an arrangement of steps.
2. The steps generate and/or modify objects of some sort.
3. Questions can be asked of some objects.

Even in domains that do not have the properties above, use can be made of the key ol-,rvatinn

that if the knowledge representation scheme is weak and inexpressive, then the deductive systorn

can use the fact that certain things cannot happen to be more efficient.

-

"11 I......
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Table "TPS Device"

(make -dev ice-type tps start x psx n fn)

(rule-of tps psx (start x)

(*do ((prim+ (*constant 36.0) (prim* x x))
(prim-less (edo-variable mva)

.Insist on six decimal digits or accuracy

(prim* x (*constant 0.000001)))
(edo-variable sum)

;;Note well: first pass is setup only
*;indx goes from start to whatever

;;nt is the new term. it is added to sum, and averaged into mva

-;mva is a 4-wide moving average. it starts out at x (not the first term')

..aprod starts at x-start, and gets multiplied by x at each step
(nt (*constant 0.0)

(prime ((emacro-device ftps fn)

('do-variable indx))

(edo-variable xprod)))

(xprod (expt x start) (prim* (edo-variable xprod) x))

(indK start (prim+ (*do-variable indx) (econstant 1.0)))

(sum (*i~onstant 0.0)

(prim+ (edo-variable sum) (ado-variable nt)))

(mve (primo ('constant 4.0) (prim-abs x))
(prim+ (prim* (*constant p.75)

('do-variable ffie))

(prim abs nt))) )
;;Macro-device specification:

((ftps (n) (fn))))
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TABLE *TPS.MULT-U 
3

(define-traflorm tps-mult-u
(co ci, mx mprod lx1 ffxl mY uty mfy)

((tps ci mx p1 *xl ffxl)

(tPS CO Mx P2 my mfy)

(*c p1 p? mprod))

((tqps cIZ mx mprod 1 Y2)

(+c ci CO C12)

(+c k C1 1)

(+c my Y, 1)

t*t mfy fyi sig)

(SIgm&? CO k y2 my UfY Sig)))

(define-trsnflSorm-macro tps-mult-u
(multif (fxl) MfXl) 

I

(yl fyi))

(dot ne-u-variabl e node tps-t-iu
(ufy (mny) (mty)))

(define-ensbCmelt tps-mult-u redute

((C ci) (mx) (mprod))

((tO i) (my) (uty))
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TABLE "SIGHAP

(make -device -type sigma? from to result def-x intoe de-fx)
(rule-of sigma? interm (def-x from)

(*do (def-x

(*mode-expression (prim- (*do-variable count) def-x))
;;,return

(access-vector (*do-variable p) def-x)
;;iteration variables. Remember that "bumps' occur sequentially
(count from (prim+ (*constant 1.0) ('do-variable count)))
(p (create-vector from def-x

((*macro-device f2 interm)

from from
((*macro-device k result) from)))

(store-vector ('do-variable p)

(*do-variable count)
(('macro-device f2 interm)

(edo-variable count) (*do-variable count)
(prim- (('macro-device k result)

('do-variable count))

(*do (;;The number of iterations is really

;;the (*DO-VARIABLE COUNT)

DEF-X(

('mode-express Ion
(prim- (edo-variable m) (edo-variable count)))
('do-variable sum)

(sum ('constant 0.0)

(prim+ ('bdo-variable sum)
(('macro-device f def-bx)

('do-variable count)

('do-variable m)

(access-vector ('do-variable p)
('do-variable m)f))

(m from (prim+ (*constant 1.0)

('do-variable m)))))))
((f (to def-x interm) (def-fx))
((f2 f) (to del-x del-is) (interm))
(k (to) (result)))
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(rule-of sigma2 result (from to)

(*do ((prim- from to)

(prim= (*do-variable count) to)

('do-variable sum)

(sum ((*macro-device slgbod def-fx) from from)

(prim+ sum

(('macro-device sigbod def-fx)

from

('do-variable count))))))

((slgbod (from def-x) (def-tx))))
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TABLE *TPS-CONSTANT-COLLAPSE*

(def ine-transform tps-constent-col lapse
(c2 x y)
((tps c2 v v x y))
((eq? x (*constant 1.0) prod)

(mpx (*constant 1.0)

(*constant 0.0)
pred

Y))

(dufine-mnablemmnt tps-constant-col lapse remove
((c2 )(x) (y)))
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TABLE "Other code written during Bernoulli number problem'

Code for macro-device MULTI-F:

(DEFUN G0042 (60039 60041)

(COND ((- (RFACTORIAL G0041) 0.0) (COND ((- 60039 0.0) (ERROR))

(T (ERROR))))

(T (QUOTIENT 60039 (RFACTORIAL 60041)))))

Code for macro-device F:

(DEFUN 60069 (60066 60067 G0068 G00r3 60064)
(TIMES IrOND ((- (RFACTORIAL G0067) 0.0) (CONO ((- 60060 0.0) (ERROR))

(T (ERROR))))

(T (QUOTIENT 60068 (RFACTORIAL 60067))))

((LAMBDA (60041)

(COND ((= (RFACTORIAL 60041) 0.0) (CONO ((- 60063 0.0) (ERROR))

(T (ERROR))))

(T (QUOTIENT 60063 (RFACTORIAL 60041)))))

(DIFFERENCE (PLUS 60066 60064) 60067))))

Code for macro-device F2 (note duplicated variable names):

(DEFUN 60071 (G0066 60067 60065 60063 60064)

(TIMES (COND ((z ((LAMBDA (60041)
(COMB ((= (AFACTORIAL 60041) 0.0)

(CONO ((* 60063 0.0) (ERROR)) (T (ERROR))))

(T (QUOTIENT 60063 (AFACTORIAL 60041)))))

(DIFFERENCE (PLUS G0066 60064) G0067))

0.0)

(COND ((- 60065 0 0) (ERROR)) (T (ERROR))))
(.T (QUOTIENT 60065

((LAMBDA (60041)

(CONO ((- (RFACTORIAL 60041) 0.0)

(CONO ((- 60063 0.0) (ERROR)) (T (rPRORfl)fl

(T (QUOTIENT 60063 (RFACTORIAL 60041)))))

(DIFFERENCE (PLUS 60066 60064) 60067)))))

(RFACTORIAL G0067)))

Code for macro device K:

(DEFUN GODS? (6066 G0081 G0082 G0083 60084)

(CONMO( (PLUS 60086 6002) 60081) 60064) (T 60083)))
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Table 'Bernoulli Code'

(DEFUN BERNOULLI (N)

(DO ((COUNT 0.0) (P (CREATE-VECTOR 0.0 N 1.0)))
(=COUNT N) (ACCESS-VECTOR P N1))

(SETQ COUNT (PLUS 1.0 COUNT) P

(STORE-VECTOR

P

COUNT

((LAMBDA (G0065)

(TIMES (COND (.((LAMBDA (60041)

(COND ((- (RFACTORIAL 60041) 0.0) (ERROR))

(T (QUOTIENT 1.0 (AFACTORIAL 60041)))))
(DIFFERENCE (PLUS COUNT 1.0) COUNT))

0-0)

(COND ((- G0065 0.0) (ERROR)) (T (ERROR))))

(T (QUOTIENT 60065

((LAMBDA (60041) I
(cOND J(( jotAC1oltIA 60041) 0.0) (ERROR))

(T (QUOTIENT 1.0 (RFACTORIAL G0041)))))
(DIFFERENCE (PLUS COUNT 1.0) COUNT)))))

(RFACTORIAL COUNT)))

(DIFFERENCE

(COND ((- (PLUS COUNT 1.0) 1.0) 1.0) (T 0.0))

(DO ((SUM 0.0) (M 0.0))

('M COUNT) SUM)

(SETO SUM

(PLUS SUM

((LAMBDA (60068)

(TIMES (COND (.(RFACTORIAL M) 0.0)

(COND ((- 60068 0.0) (ERROR)) (T (ERROR))))
(T (QUOTIENT 60068 (RFACTORIAL M))))

((LAMBDA (60041) P
(COND ((a (RFACTORIAL 60041) 0.0) (ERROR))

(T (QUOTIENT 1.0 (AFACTORIAL 60041)))))

(DIFFERENCE (PLUS COUNT 1.0) M))))

(ACCESS-VECTOR P M)))

M (PLUS 1.0 M)))))))))
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(*EXPRSSIONTABLE 
'Bernoulli Time Cost*

(EXPRESS ION

(PRIM*4

(EXPRESSION

(PRIM+

(*CONSTANT 14.0)

(*EXPRESS ION

(PR 14

(*EXPRESSION (PRIM* (*CONSTANT 2.0) (*VARIABLE N)))

(*EXPRESS ION

(PROSTNTM 70

(*CNSINM 2.0

(*EXPRESSION (PRIM* (*EXPRESSION (PRIM4+ (*CONSTANT 23.0)

(*EXPRESSION (PRIM*e (ACONSTANT ? 0)

(*VARIABLE N)))))

('VARIABLE N)))

(*CONSTANT 14.0))))

This can be summarized to:4

(POLY 3.0 2 0)

This means the time cost is essentially 2N3

Ir
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TABLE "Bernoulli NVALUE facet"

(*DO

((*VARIABLE N)

(*MODE-EXPRESSION (PRIM- (*DO-VARIABLE COUNT) (*VARIABLE N)))

(*EXPRESSION (ACCESS-VECTOR (*DO-VARIABLE P) (*VARIABLE N)))

(COUNT (*CONSTANT 0.0)

(*EXPRESSION (PRIM+ (*CONSTANT 1.0) (*DO-VARIABLE COUNT))))
(P

(*EXPRESSION (CREATE-VECTOR ('CONSTANT 0.0) (*VARIABLE N)

(*EXPRESSION (60071 (*CONSTANT 0.0) (*CONSTANT 0.0)

(*EXPRESSION (60087 (*CONSTANT 0 0)

(*CONSTANT 1 0)

(*CONSTANT 1.0)

(*CONSTANT 0.0)

(*CONSTANT 1 0)))

(*CONSTANT 1.0) (*CONSTANT 1.0)))))

(*EXPRESSJON

(STORE-VECTOR (*DO-VARIABLE P) ('DO-VARIABLE COUNT)

(*EXPRESSION

(60071 (*DO-VARIABLE COUNT) (*DO-VARIABLE COUNT)

(*EXPRESSION

(PRIM-

(*EXPRESSION (60087 (*DO-VARIABLE COUNT) (*CONSTANT 1.0) (*CONSTANT 1.0)

('CONSTANT 0.0) (*CONSTANT 1.0)))

(*DO

((*VARIABLE N)

(*MODE-EXPRESSION (PRIM= (*DO-VARIABLE M) (*DO-VARIABLE COUNT)))

(*DO-VARIABLE SUM)

(SUM ('CONSTANT 0.0)

(*EXPRESSION

(PRIM+ (*DO-VARIABLE SUM)

(*EXPRESSION (G0069 (*DO-VARIABLE COUNT) (*DO-VARIABLE M)

(*EXPRESSION (ACCESS-VECTOR (*DO-VARIABLE P)

(*DO-VARIABLE M)))
('CONSTANT 1.0) (*CONSTANT 1.0))))))

(11 ('CONSTANT 0.0)

(*EXPRESSION (PRIM+ (*CONSTANT 1.0) (*DO-VARIABLE M))))))))

(*CONSTANT 1.0) (*CONSTANT 1.0))))))))

.1
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